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Abstract

Cellular Automata (CA) are a well-established bio-inspired model of computation that has been successfully
applied in several domains. In the recent years the importance of modelling real systems more accurately has
sparkled a new interest in the study of asynchronous CA (ACA). When using an ACA for modelling real systems, it
is important to determine the fidelity of the model, in particular with regards to the existence (or absence) of
certain dynamical behaviors.

This paper is concerned with two big classes of problems: reachability and preimage existence. For each
class, both an existential and a universal version are considered. The following results are proved. Reachability is
PSPACE-complete, its resource bounded version is NP-complete (existential form) or coNP-complete (universal
form). The preimage problem is dimension sensitive in the sense that it is NL-complete (both existential and
universal form) for one-dimensional ACA while it is NP-complete (existential version) or ΠP

2-complete (universal
version) for higher dimension.
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1. Introduction

Cellular Automata (CA) are a well-known and widely used formal model, consisting of a set of state automata
arranged on a finite or infinite lattice. A configuration is a snapshot of all the states of the automata. Each
automaton updates its state by using a local rule that depends only on the states of the automaton and of its
neighbours. The local rule is uniform, i.e., the same for all the automata, and it is applied synchronously, that is,
all the automata update their state at the same time. We refer the reader to [15, 9, 1, 8, 7, 2] for an up-to-date
overview and recent results on classical CA.

The interest in studying asynchronous CA (ACA) has recently increased because of the necessity of modelling
real-life systems. Indeed, in nature few processes are really synchronous, and asynchrony is the common situation.
Inspired by the necessity of modelling such processes, many different variations of the classical CA have been
defined. We recall, for example, α-asynchronous CA [12], in which a cell is updated at each step with a probability
α, fully asynchronous CA [11, 17] (fully-ACA) in which only one cell is updated at each time step, and mACA, an
“umbrella” model, that captures the behaviours of many other asynchronous CA models [6, 5].

Cellular automata have been widely used as formal models of complex systems because of their wide variety
of dynamical behaviours. Most of these dynamical behaviours are undecidable in the general case [10, 16, 3].
However, in the case of finite configurations, they turn out to be decidable. It is therefore interesting to understand
from a computationally complexity point of view how hard is the decision problem for a given dynamical behavior.
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In [20], Sutner classifies the complexity of most of these behaviours. In particular, he shows that the reachability
problem is PSPACE-complete and the existence of a preimage is NL-complete for one-dimensional CA while it is
NP-complete for higher dimensions.

This paper follows the same trend for both the ACA and the fully ACA models. In any asynchronous setting,
of course, one has to cope with the cell updating sequence of the automaton, which strongly interacts with the
dynamical behaviour and might influence the computational complexity. Indeed, for any decision problem, two
versions are considered: an universal form (i.e., the property is considered w.r.t. to all possible updates) and an
existential one (i.e., the property is satisfied by at least one update sequence).

The main problem addressed is reachability, i.e., to establish if a configuration y is in the orbit of another
configuration x . Similarly to what happens for classical CA, the reachability problem for ACA is PSPACE-complete.
However, when a restriction is assumed on the number of time steps in the automaton evolution to reach a
configuration y from a configuration x , there is a difference between the synchronous and asynchronous cases.
In the former, the problem is P-complete, while in the latter it is either NP (existential form) or coNP-complete
(universal form). These results highlight the fact that the order in which the cells are updated can be used to
“extract” non-determinism.

Our results rely on a general simulation of non-deterministic Turing machine (TM) inspired by the simulation
of a deterministic TM presented in [4]. While the idea of using asynchronous CA to simulate other systems – even
other CA – is not new (see, for example [21]), here the asynchrony is not an additional challenge that needs to be
solved, but an essential feature of the simulation that is used to perform non-deterministic choices.

The other main class of problems addressed in this paper is linked to the preimage existence. Remark that this
problem has additional challenges for ACA and fully-ACA. Indeed, a preimage may exist for a certain choice of
cells to update but not for another. The universal and the existential form of the preimage existence problem for
one-dimensional fully ACA are in L, while the corresponding ones for fully ACA are NL-complete.

The same problems turn out to be intractable for ACA in dimension two or higher: the existence of an update
sequence for which there exists a preimage is an NP-complete problem, while asking whether a preimage exists for
all updates is coNPNP-complete. The last case is particularly interesting since it shows an increase in complexity
with respect to the synchronous case, which is NP-complete [20].

The paper is structured as follows: Section 2 recalls the necessary notions on CA, ACA, fully-ACA, and Turing
machines. Section 3 contains a way to simulate a non-deterministic Turing machine with only a polynomial
slowdown by means of ACA and fully-ACA. The complexity of the reachability and reachability in polynomial
time problems are then studied and the obtained results are compared with the ones known for classical CA. The
preimage problems are the core of Section 4. Finally, a brief summary of the paper and some directions for future
research are given in Section 5.

2. Basic Notions

In this section we briefly recall the basic notions on CA, ACA, and fully ACA.
For a, b ∈ N with a ≤ b, denote by [a, b] the set of integers {a, a + 1, . . . , b}. Let A be a finite alphabet. A

(finite) CA configuration of length n ∈ N is a function c : [1, n]→ A, i.e., c ∈ An. For any configuration c and any
position (cell) i ∈ [1, n] we denote by ci the element c(i) in that position.

Definition 1. A one-dimensional CA is a triple C = (A, r,λ), where A is a finite alphabet, r ∈ N is the radius, and
λ: A2r+1→ A is the local rule of the CA.

A finite CA of size n ∈ N is a CA with configurations of length n. The local rule is applied synchronously to all
positions of any configuration c ∈ An, giving rise to a global function Λ : An→ An defined as follows:

∀i ∈ [1, n], Λ(c)i = λ(ci−r , . . . , ci , . . . , ci+r)

where periodic boundary conditions are used, i.e., c j = c( j mod n)+1 for positions j /∈ [1, n]. In this paper, we only
deal with finite ACA and fully ACA with periodic boundary conditions. However, all the results also hold in the
case of fixed boundary conditions.

The definition of CA can be extended to d ∈ N dimensions.
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Definition 2. Let d ∈ N. A d-dimensional CA is a triple C = (A, r,λ), where A is a finite alphabet, r ∈ N is the
radius, and λ: A(2r+1)d → A is the local rule of the CA.

The definition of CA dynamics and global function immediately generalize to the any dimension.
We are now ready to define ACA and fully-ACA. A finite and instantiated Asynchronous CA (ACA) of size n

(in any dimension) is a quadruple (A, r,λ,υ) where the first three elements define a CA and υ= (υt)t∈N\{0} with
υt ⊆ [1, n] is called updating sequence. Every instantiated ACA induces a dynamical behavior described as follows.
In dimension 1, the evolution of any configuration c ∈ An is the sequence {Λt(c)}t∈N where Λ0(c) = c and, for
every t ∈ N, Λt+1(c) is defined as

∀i ∈ [1, n], Λt+1(c)i =

¨

λ(Λt(c)i−r , . . . ,Λt(c)i+r) if i ∈ υt

ci otherwise.

where periodic boundary conditions are used. In other words, at each time step t > 0, the local rule f is applied
on the positions whose index is contained in υt , according to the updating sequence υ. For any two configurations
x , y , we say that y is reachable from x iff Λt(x) = y for some t ∈ N; if y is reachable from x in exactly one step,
we say that x is a preimage of y .

A fully-ACA is an ACA in which each element in the updating sequence is a singleton set. We address the reader
to [17] for an introduction and a study of the dynamical behavior of fully-ACA acting on infinite configurations.
All the previous notions easily extend to any dimensions.

When no updating sequence is specified but the triple (A, r,λ) is meant to be the core of an asynchronous
automaton, we will refer to uninstantiated ACA (resp., uninstantiated fully-ACA), or in brief ACA (resp., fully-ACA).

We assume that all the problems presented in this paper use the following encoding for ACA and fully-ACA:
The alphabet A is given only as its size (that is, we assume A= [0, |A| − 1]) and the local rule λ is given explicitly
as a table of |A|(2r+1)d entries (where d is the dimension of the ACA), each one consisting of an element of A. In
this way, the total size of the encoded CA is s = Θ

�

log |A|+ |A|(2r+1)d × log |A|�. This assures that r = Θ(log s).
A non-deterministic Turing Machine (NDTM) is a 6-tuple M = (Q,Σ, Γ ,δ, qI ,QF ), where Q is the set of states,

Σ is a finite alphabet of input symbols, Γ ⊇ Σ is a finite alphabet of symbols that can be written on the machine
tape, δ ⊆ (Q× Γ )× (Q× Γ ×{/,.}) is the transition relation of the machine, and qI and QF are the initial state and
set of final states, respectively. With an abuse of notation we will write δ(q,σ) = (q′,σ′, m) if (q,σ, q′,σ′, m) ∈ δ.
A Turing machine is deterministic if δ a function. A space-bounded TM has a finite amount of available tape. It is
endowed with an ending marker $ denoting the end of the available space and it never moves its tape head beyond
the marker. Without loss of generality, in this paper we assume that, for all TM, each accepting computation ends
up into a configuration consisting of a blank tape with the tape head in the first cell and the machine in the unique
accepting state.

We briefly recall the complexity classes used in this paper [18]: L (resp., NL) is the class of decision problems
solvable by deterministic (resp., non-deterministic) TM working in logarithmic space, P is the class of decision
problems solvable by deterministic TM in polynomial time, NP (resp., coNP) is the class of decision problems
solvable by a NDTM in polynomial time and in which the answer is positive if a computation (resp., all computations)
accepts. The class of coNPNP, also denoted as ΠP

2, is the same as coNP except that the NDTM has access to a NP
oracle. Finally, PSPACE is the class of decision problems solvable by a deterministic TM working in polynomial
space; recall that this class coincides with NPSPACE, its nondeterministic counterpart, and with coNPSPACE, the
class of problems solved by polynomial-space NDTM having positive answer when all their computations are
accepting.

3. Simulation of NDTM

In this section we study the reachability problems for asynchronous cellular automata. To deal with them, we
provide a way for ACA and fully-ACA to simulate a NDTM by exploiting the nondeterminism implicitly contained
in the updating sequence. We show that the asynchronous counterpart of the reachability problem is PSPACE-
complete, as in the classical CA setting. However, if a constraint on time is added, the complexity changes from
P-completeness to NP or coNP-completeness depending on the specific version of the problem.
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Definition 3. Let n, k ∈ N. An infinite sequence υ = (υ0,υ1, . . .) of natural numbers in [1, n] is said to be
(n, k)-universal if, for each i ∈ N, its finite subsequence (υi , . . . ,υi+k−1) of length k contains each number in [1, n]
at least once.

Reachability problems. Given a finite d-dimensional ACA (resp., fully-ACA) C with n cells and radius r and two
configurations x , y ∈ An, we consider the following asynchronous counterparts of the classical CA reachability
problem:

• The ∃-update reachability problem (existential reachability) for finite ACA (resp., fully-ACA) consists of
deciding whether there exists an updating sequence such that y is reachable from x in the corresponding
instantiated ACA (resp., fully-ACA). The total input length is Θ

�

log |A|+ |A|(2r+1)d log |A|+ 2|A|n� bits.

• The ∀-update reachability problem (universal reachability) for finite ACA (resp., fully-ACA) consists of
deciding whether for all (n, k)-universal sequences, where k is given in input in unary, y is reachable
from x in the corresponding instantiated ACA (resp., fully-ACA). The total input length for this problem
is Θ

�

log |A|+ |A|(2r+1)d log |A|+ 2|A|n + k
�

bits.

Given a finite d-dimensional ACA (resp., fully-ACA) C with n cells and radius r, two configurations x , y ∈ An, and
a unary string 1t with t ∈ N, we define the following polynomial-time reachability problems:

• The ∃-update reachability in polynomial time problem for finite ACA (resp., fully-ACA) consists of deciding
whether there exists an updating sequence such that y is reachable from x within t steps in the corresponding
instantiated ACA (resp., fully-ACA). The total input length is Θ

�

log |A|+ |A|(2r+1)d log |A|+ 2|A|n + t
�

bits.

• The ∀-update reachability in polynomial time problem for finite ACA (resp., fully-ACA) consists of deciding
whether for all (n, k)-universal sequences, where k is given in input in unary, y is reachable from x within t
steps in the corresponding instantiated ACA (resp., fully-ACA). The total input length for this problem
is Θ

�

log |A|+ |A|(2r+1)d log |A|+ 2|A|n + k+ t
�

bits.

Notice that in the universal versions of the problems the updating sequence is required to be (n, k)-universal.
Otherwise, it would be easy to find updating sequences that never allow reachability (e.g., those which do not
contain a certain cell position) or slow it down arbitrarily (e.g., those including a position only after an exponential,
or worse, number of steps). The (n, k)-universality requirement actually allows us a certain degree of fairness in
the sequences under investigation, since they force each cell to update at least once every k steps.

NDTM simulation by asynchronous cellular automata. Let M = (Q,Σ, Γ ,δ, qI ,QF ) be a NDTM working in space n.
Without loss of generality, we assume that |δ(q,σ)| ≤ 2 for all q ∈Q and σ ∈ Γ , i.e., nondeterministic choices are
at most binary. Furthermore, when |δ(q,σ)| = 1 we assume that the NDTM still performs a non-deterministic
choice, but with two identical outcomes, i.e., the non-deterministic bit is ignored. This restriction is useful, as it
allows us to simulate deterministic and non-deterministic steps uniformly.

We are now going to build the asynchronous automaton which simulates M . The alphabet of such ACA or
fully-ACA is A= Γ × (Q ∪ {ε})× {?, 0, 1,/,.,ε}. In this way, each element of A is a triple in which the first element
represents the content of a tape cell of M , the second element is either the current state of M or empty (i.e., ε),
and the third element is an auxiliary one that, depending on the current state of the simulation, can be either
empty (ε), or requesting a non-deterministic bit (i.e., containing the symbol ?), or having a non-deterministic bit
(0 or 1), or the movement that the tape head must perform (/ or .).

The encoding of a configuration of M (which works in space n) is performed in the following way: the
corresponding ACA has n cells and the first component of its i-th cell contains the symbol in the i-th position of
the tape. The second component is empty (ε) except in the cell corresponding to the tape cell scanned by M , that
contains the current state of the NDTM. The third component is empty (ε) in all the cells. This can be graphically
pictured as follows:

q

a abb a a $b

a b a
q

← tape layer
← state layer
← auxiliary layer

b a a $b
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The simulation of one step of M is performed by means of multiple steps in the ACA evolution. We describe
only the steps involving the cell corresponding to the head position of M (cell i) and the two adjacent cells (i − 1
and i + 1). Any other updated cell simply maintains its current state. The different parts of the simulation can be
summarized as follows:

1. When cell i is updated, the symbol ? appears in the auxiliary layer. This means that the next phase will be
used to obtain a non-deterministic bit of information.

2. The non-deterministic bit is obtained by means of a “race condition” between cell i and the two adjacent
cells. If i is updated before or at the same time as one of the adjacent cells, then the value 0 appears in the
auxiliary layer. Otherwise, when cell i updates, it will be able to determine that one of the other cells has
already updated and will write 1 in the auxiliary layer.

3. Before simulating the transition of M with the newly obtained non-deterministic bit, the cell i waits for cells
i − 1 and i + 1 to delete the content of the auxiliary layer, thus reverting to the original state.

4. Now, when cell i updates again, it replaces its symbol and state according to the transition table of M and
the non-deterministic bit and it writes in the auxiliary layer the movement that the tape head must perform
(/ or .).

5. When the cell toward which the tape head should be moved (i.e., i+1 for ., i−1 for /) is updated, it copies
to its own state layer the updated state of M from cell i.

6. Finally, when cell i updates again, it deletes the content of the state and auxiliary layer. The new configuration
of the ACA now corresponds to one among the at most two possible next configurations of M .

The entire transition table of the local function can be obtained by observing Figure 1, in which the cells that
update are highlighted in light gray. The local function on any non-highlighted cell does not modify the content of
the cell. Furthermore, configurations marked with ∗ represent updates that can be performed either in parallel (as
depicted) or sequentially (by updating the highlighted cells in any order). Finally, configurations marked with †
represent updates that are only possible for ACA but not for fully-ACA, as they require multiple cells updating
simultaneously; the simulation works even when these updates are unavailable.

Lemma 4. Let M be a NDTM working in space n and let C be the ACA (resp., fully-ACA) obtained from M by means of
the above construction. For any two configurations y, y ′ of M, there exists a computation of M from y to y ′ iff there
exists a (n, k)-universal updating sequence υ, where k is polynomial in n, such that in the instantiated ACA (resp.,
fully-ACA) defined by C and υ, the encoding of y ′ is reachable from the encoding of y. Furthermore, the simulation
of t steps of M by C and any (n, k)-universal sequence only requires O(p(n, t)) steps, for some polynomial p.

Proof. Suppose that there exists a computation of M from y to y ′. Choose any updating sequence υ′ such that the
instantiated ACA (resp., fully-ACA) defined by C and υ′, updates every time step at least one (resp., exactly one)
the cells highlighted in grey in Figure 1 at each time step, according to the non-deterministic choices that M has to
perform. The construction of C assures that the simulation of one step of M needs 5 to 9 steps of the automaton.
Now we need to choose υ′ in order to have a (n, k)-universal sequence. Among all the updating sequences υ′,
consider a sequence υ such that, after having simulated the computation step of M , activate sequentially the cells
in [1, n] not already activated in the last n+ 9 steps. By choosing k = n+ 9 we obtain that υ is (n, k)-universal,
where k is polynomial in n.

Notice that Figure 1 shows all the positions where an update causes a change of the configuration (by
construction, every cell at distance two or more from the cell corresponding to the current tape head position
of M does not change state when updated). The particular order in which the cells are updated is immaterial,
except when a nondeterministic choice is simulated in the second step of Figure 1. Let υ be a (n, k)-universal
updating sequence; then at least one of the positions needed to advance the simulation is activated every k steps
(since all positions in [1, n] are updated at least once every k time steps). Since the simulation of one step of
the TM requires between 5 and 9 updates, it is guaranteed that after 9k steps at least one step of the TM has
been simulated. If k is polynomial with respect to n, then the simulation can be carried out with a polynomial
slowdown.

Vice versa, if the ACA reaches the encoding if y ′ starting from the encoding of y by means of a (k, n)-universal
sequence υ, it is possible to construct a sequence of non-deterministic choices of M such that y ′ is reached from y .
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Such a sequence can be built by looking at which path of Figure 1 is taken according to υ by looking only at the
cell corresponding to the position of the head of M and its two neighbours.

By using the above described NDTM simulation we are now able to prove the following two theorems that
show that adding asynchrony to CA does not increase the complexity of the reachability problem, which is
PSPACE-complete as in the synchronous case [20].

Theorem 5. The ∃-update reachability problem for finite ACA (resp., fully-ACA) is PSPACE-complete.

Proof. The problem is in PSPACE since, if y is reachable from x , then it is reachable in a number of steps that is
at most exponential in n, i.e., the number |A|n of distinct configurations. Therefore, we can count the number of
visited configurations in polynomial space. Since PSPACE = NPSPACE, we can simulate the ACA (resp., fully-ACA)
C with initial configuration x by means of a NDTM working in polynomial space that chooses non-deterministically
at every time step a set of positions to update (or only one position if we are considering fully-ACA). If y has not
been reached after at most |A|n time steps then the computation rejects and accepts otherwise. Thus, the problem
is contained in PSPACE.

As to completeness, we have shown that it is possible to build an ACA (resp., fully-ACA) C that simulates a TM
working in polynomial space. Let x be the configuration of C encoding the initial configuration of a TM M . We
can assume, without loss of generality, that M has a single accepting configuration: this can be guaranteed by
letting M erase its tape and moving its head to the leftmost tape position before entering the original accepting
state; let y be the encoding of the final accepting configuration for M . By Lemma 4, there exists an updating
sequence υ such that y is reachable from x in the instantiated ACA (resp., fully-ACA) if and only if there exists an
accepting computation of M on the input encoded by x . Since deciding the latter property is PSPACE-hard, the
statement of the theorem follows.

Theorem 6. The ∀-updates reachability problem for finite ACA (resp., fully-ACA) is PSPACE-complete.

Proof. Let C be a finite ACA (resp., fully-ACA) of size n. The automaton C can be simulated starting from any
configuration x by a NDTM M which rejects only when it detects a (n, k)-universal updating sequence not leading
to the target configuration y . At each time step, M non-deterministically chooses a subsets of cells to be updated
(resp., a cell to be updated), while keeping track of the history of the last k choices. If [1, n] is not contained
inside this history, then the guessed sequence is not (n, k)-universal and M accepts.

The ACA (resp., fully-ACA) has |A|n possible configurations, and there are 2n − 1 (resp., n) possible updates,
thus (2n − 1)k (resp., nk) update sequences of length k. Hence, C can only perform m= |A|n × (2n − 1)k (resp.,
m = |A|n × nk) computation steps before re-entering the same configuration z after having performed the same
updates in the last k steps. We show that, if there is an updating sequence υ such that y is not reached within m
steps in the instantiated ACA defined by C and υ, then there is a (n, k)-universal one such that y is never reached
in the corresponding instantiated ACA. This means that the machine M can reject if y has not been reached after
having simulated m steps of C.

The pigeonhole principle assures that the above-mentioned updating sequence υ can be written as follows:

υ= (υ1, . . . ,υi ,υi+1, . . . ,υi+k, . . . ,υ j ,υ j+1, . . . ,υ j+k, . . . ,υm+1, . . .)

for some distinct i, j ∈ [1, m], with (υi+1, . . . ,υi+k) = (υ j+1, . . . ,υ j+k) and Λi+k
υ (x) = Λ

j+k
υ (x) = z. Then, the

updating sequence
υ′ = (υ1, . . . ,υi ,υi+1, . . . ,υi+k,υi+k+1, . . . ,υ j),

where the overlined part is periodically repeated in the sequence, ends up in the cycle

(z = Λi+k
υ (x), . . . ,Λ j+1

υ (x) = Λ
i+1
υ (x), . . . ,Λ j+k

υ (x) = Λ
i+k
υ (x) = z),

never reaching y . Since M has not accepted while performing the computation corresponding to the updating sub-
sequence (υ1, . . . ,υ j), such sequence has updated every position in [1, n] at least once for each of its subsequences
of length k. Therefore, υ′ is (n, k)-universal since it consists of repeated subsequences of (υ1, . . . ,υ j). M can then
reject if y has not been reached after m simulated steps; the machine can count from 0 to m in polynomial space
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as m consists of O(n log |A|+ nk) (resp., O(n log |A|+ k log n)) bits. If, on the other hand, M reaches y within m
simulated steps, then it accepts.

Hence the problem is in coNPSPACE and thus in PSPACE; we now need to prove its hardness. Since deterministic
TM working in polynomial space are a special case of NDTM with the same restriction, we can simulate them
with ACA (resp., fully ACA) as described above. However, deterministic TM only have a single computation. By
Lemma 4, all (n, k)-universal sequences will simulate that computation of the TM. Therefore, asking whether
one (n, k)-universal sequence leads to the accepting configuration of a deterministic TM is equivalent to asking
whether all such sequences lead to it (the only difference being the number of steps required to do it). This
proves that the the same PSPACE-hardness construction presented in the proof of Theorem 5 can be used for the
∀-updates reachability problem.

When considering the reachability problems with the addition of the time constraint, we can prove that the
complexity grows from P-completeness [20] to NP-completeness for the existential version and coNP-completeness
for the universal one. The difference is the same as the one that appears when passing from simulating TM
working in space n to TM working in time n [18].

Corollary 7. The ∃-update reachability in polynomial time problem for finite ACA (or fully-ACA) is NP-complete.
Furthermore, the ∀-updates reachability in polynomial time problem for finite ACA (or fully-ACA) is coNP-complete.

Proof. The t computation steps of the ACA (or fully-ACA) C can be simulated in polynomial time by a NDTM M
guessing a prefix of length t of an updating sequence υ. Only in the case of the universal version of the problem
M machine accepts if the guess turns out not to be (n, k)-universal (since non-(n, k)-universal sequences do not
influence the answer). Then, M actually performs the simulation of C according to υ for t steps starting from x ,
and accepts if and only if y is reached within that time limit (x and y are the configurations from the statement
of the problem). Hence, M accepts at least once for the existential version of the problem, (resp., always for the
universal one) iff for some updating sequence (resp., for all (n, k)-universal updating sequences) it holds that y is
reached from x within t steps. This shows that the existential version of the problem is in NP while the universal
one is in coNP.

The hardness of the problem in the existential (resp., universal) form can be shown by reduction from the
problem of deciding whether a nondeterministic (resp., co-nondeterministic) Turing machine N accepts its input
within u steps (in unary notation). We can build in polynomial time an ACA (or fully-ACA) simulating N as
described above, and set t = 9u for the existential form (simulating a step of the TM requires at most 9 steps in
the most efficient updating sequence) and t = 9ku for the universal form (simulating a step of the TM requires
at most 9k steps in the least efficient (n, k)-universal updating sequence). This proves the NP-hardness of the
existential form of the problem, and the coNP-hardness of the universal one.

4. Preimage Existence Problems

In this section we study the complexity of finding a preimage for ACA and fully-ACA. While in the second case the
problems are all of low complexity, in the first one the complexity depends on the dimension, as in the synchronous
case, with the problems in dimension 1 being NL-complete, and either NP-complete or coNPNP-complete in
dimension 2 or higher.

Given a d-dimensional ACA (resp., fully-ACA) C of n cells and a configuration c, for a total input length
of Θ

�

log |A|+ |A|(2r+1)d log |A|+ |A|n� bits, we consider the following two problems:

• The ∃-update preimage existence problem for finite ACA (resp., fully-ACA) problem consists of deciding if there
exists a non-empty set of positions (resp., a position) υ1 such that c admits a preimage in any instantiated
ACA (resp., fully-ACA) problem with updating sequence having υ1 as first component.

• ∀-update preimage existence problem for finite ACA (resp., fully-ACA) problem consists of deciding if, for every
set of positions (resp., position) υ1, c admits a preimage in any instantiated ACA (resp., fully-ACA) problem
with updating sequence having υ1 as first component.
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Notice that we have excluded the empty set in the first problem since every configuration is its preimage when no
cell is updated.

Theorem 8. The ∃-update (resp., ∀-updates) preimage existence problem for finite fully-ACA is in L.

Proof. Let C be the encoding of a fully-ACA (in any dimension) and c be a configuration. Let us consider the
following algorithm which first, for each position i in c, examines the neighborhood of i, and replaces ci by each
state of A, one at a time; then, it checks if the image of the neighborhood obtained in this way coincides with ci .
Finally, it accepts if there exists one such position i (resp., all positions i have this property). This algorithm can
be executed in logarithmic space, by storing the replacement of ci on the working tape rather than changing the
input.

The following two theorems show that the preimage existence problem in both its existential and universal
version is NL-complete, as in the synchronous case. The proof is, in fact, inspired by the one presented in [20].

Theorem 9. The ∃-update preimage existence problem for one-dimensional finite ACA is NL-complete.

Proof. To show the inclusion in NL consider the following non-deterministic TM working in logarithmic space and
having the description of an ACA C = (A, r,λ) and a target configuration c = c1 · · · cn on its input tape. First of all,
the TM maintains a sliding window of size 2r + 1 of symbols of A, a bit b (initially 0) to check if at the number of
updated cells is non-null, and an index i ranging in [1, n]. At every time step the machine non-deterministically
decides whether to apply the local function to the current 2r + 1 symbols (and set b to 1) or to simply copy
the central symbol (the i-th cell is not updated); in both cases, the machine checks if the obtained symbol is
the i-th one in the target configuration. If so, the algorithm continues by increasing i by one, removing the
leftmost symbol in the sliding window while moving all the others to the left and guessing another symbol for
the rightmost position. Otherwise the machine rejects. When all the positions have been checked, i.e., there
exists a preimage for the target configuration, the algorithm needs only to check if b is 0 (i.e., the preimage
is the trivial one since no cell has been updated) or not. In the first case, the computation rejects and accepts
otherwise. The periodic boundary conditions are enforced by storing the first r symbols guessed and using them
when checking the last r positions. The algorithm runs in Θ((2r + 1) log |A|) space. Since the encoding of the
input requires m = Θ

�

log |A|+ |A|2r+1 log |A|+ |A|n� bits (the description of the ACA plus the target configuration)

we have (2r + 1) log |A| = O
�

log m−|A|n−log |A|
log |A|

�

, that is (2r + 1) log |A| = O(log m), thus showing that logarithmic
space suffices. Notice that the previous algorithm can also be expressed in term of finding paths on a De Bruijn
graph having multiple labels on each edge.

Let G = (V, E) be a directed graph and s, t ∈ V . We reduce graph reachability in G to the problem of the
theorem’s statement. Let C = (A, 1,λ) be a ACA of length n = |V |+ 2, where A= E ∪ {(v, v) | v ∈ V} ∪ {s, t,♥,♠},
and we ask whether the configuration c = s♥n−2 t has a preimage. The local function λ is defined in the following
way:

λ(x , y, z) =



























s if y = s and z = (s, v) for some v ∈ V .

t if y = t, z = s, and x = (u, t) for some u ∈ V .

♥ if y = (u, v) and z = (v, w) for some u, v, w ∈ V
or if y = (u, t) and z = t for some u ∈ V .

♠ otherwise.

We now show that c has a preimage iff there exists a path from s to t in G. The function λ forces each preimage to
have the form s(s, v1)(v1, v2) · · · (vn−2, t)t where each state of the form (u, v) is either in V or it is a self-loop, where
the self-loops exist only to assure that each path has length exactly |V |. Notice that the only updates that lead
from such preimages to the target configuration c are those containing all positions in [2, n− 1] and, optionally,
1 or n for a total of four possible updates. Hence, it is immediate that an update leading from such preimages
to c exists iff the path that it defines (possibly with self-loops removed) exists in G. Starting from G the ACA C
can be built in deterministic logarithmic space. This can be done by looking at a constant number of edges at a
time. Since determining the existence of a path in a directed graph is a NL-complete problem, the hardness of the
theorem’s problem follows.
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Theorem 10. The ∀-updates preimage existence problem for one-dimensional finite ACA is NL-complete.

Proof. We first show that the algorithm in the proof of Theorem 9 can be adapted to prove the inclusion in coNLNL.
Since the logarithmic space hierarchy collapses to NL [14], the given problem is actually contained in NL. First of
all, we redefine the algorithm to have an additional input of length n in binary representing the non-deterministic
choices performed when deciding whether to update or not a cell. We will ask a query to an oracle for the problem
solved by this modified algorithm. The non-deterministic coNL machine will simply copy its input (i.e., the
description of the ACA C and the target configuration c) to the query tape and then, also on the query tape, it will
write n non-deterministically chosen bits. The answer of the machine will be the same as the oracle unless the
n guessed bits were all 0; in that case the machine will accept even if the oracle rejects. The machine has only
accepting computations iff the target configuration c has a preimage for each possible choice of cells to update.

To show the NL-hardness of the problem, we modify the ACA used for the reduction in the proof of Theorem 9
in the following way: the alphabet and radius are the same, as it is the target configuration c = s♥n−2 t. The local
rule λ is instead defined as follows:

λ(y, z) =



























s if y = s and z = (s, v) for some v ∈ V or z =♥.

t if y = t and z = s.
♥ if y = (u, v) and z = (v, w) for some u, v, w ∈ V or

y = (u, t) and z = t for some u ∈ V or z =♥.

♠ otherwise.

The only difference from the original local rule is that the presence of ♥ in the right cell generates ♥ instead of ♠.
As in the proof of Theorem 9, there exists a preimage c′ for c when all cells update iff there exists a path from s to
t in G. In that case c also has a preimage for each possible update. In particular, if a position i ∈ [2, n− 1] does
not update we can simply take c′ and replace the content of the i-th cell with ♥. The local rule assure that such a
state has c as image. Therefore, the problem is NL-hard.

As in synchronous CA, increasing the number of dimensions also increases the complexity of the problems.
In particular, we show that it is possible to evaluate arbitrary circuits and, as a direct consequence, formulae.
Furthermore, in one case we can also add universally quantified variables to the circuit or formula.

To encode a circuit in a two-dimensional CA, we will use an alphabet describing wires, logical gates, empty
space and existentially and universally quantified variables. We will use the convention that black represents
a false or 0 value, red a true or 1 value and light gray that the corresponding wire/port has no current value
assigned. The entire alphabet is the following one:

• The and gate: , , , , .

• The or gate: , , , , .

• The not gate: , , .

• Duplication of the signal: , , .

• Circuit output set to true:
1

,
1

.

• Horizontal and vertical wires: , , , , ,

• Curved wires: , , , , , , , , , , , .

• “Jumping wires”: , , , , .

10



• Three existential and two universal quantifiers: ∃ , ∃ , ∃ , ∀ , ∀ .

• White spaces: , .

• Error state: ♠ .

Without going into details, it is possible to check that a circuit encoded in a CA is well-formed in a local way, in
particular using a local rule having radius one. This means that it is necessary to verify that a black (resp., red)
wire is always connected to a black (resp., red) wire or to a black (resp., red) input or output of a gate. If this is
the case, the local rule “paint” all the wires and gates in gray.

Example 11. A correct circuit respects all the properties stated above and also all spaces unoccupied by wires
and gates are crossed; this is a necessary technical restriction that will be used in one of the proofs. When a circuit
is well-formed, all its wires and gates are colored in gray and the crosses are removed from the empty spaces by
the local rule:

If the local rule detects an inconsistency of the circuit then an error state is produced as in the case below:

♠ ♠ ♠
♠ ♠ ♠

In this example there are two inconsistencies: a wire that is not connected to another wire or gate and a wire
that, even if correctly connected, changes its value. The error state is produced in the cells that are able to detect
the inconsistencies using radius one. Therefore, any configuration containing the error symbol cannot have a
preimage that is a well-formed circuit.

We are now able to prove that deciding if a configuration admits a preimage for some non-empty set of
positions to update is NP-complete, as the corresponding problem in synchronous CA [20].

Theorem 12. The ∃-update preimage existence problem for two-dimensional finite ACA is NP-complete.

Proof. The problem is in NP, since, given a configuration c, it is possible to guess at the same time the preimage and
the cells to update. Moreover, the verification that c has the guessed preimage can be performed in deterministic
polynomial time.

We reduce the 3-SAT problem [13] to this problem. Given a Boolean formula ϕ = ϕ1 ∧ϕ2 ∧ . . .∧ϕm in CNF
using the variables V = {x1, . . . , xn}, it is possible to build a circuit representing ϕ using a two-dimensional CA
encoding the circuit representing the formula having width 4m+ 1 and height n+ 4+ dlog2 me (see Figure 2).
The circuit is built as follows: in the leftmost column for each variable there is an existentially quantified state,
indicating that the variable appears under an existential quantifier (implicit in the usual formulation of 3-SAT).
Notice that in this construction no universal quantifier is used. From each existential state a wire is connected to
the gates representing the disjunctions in the clauses (possibly after being negated); the wire exiting from the
disjunction are, in turn, connected to a binary tree of m− 1 gates having logarithmic depth and outputting one.
This is a circuit representation of the formula ϕ, which requires only a polynomial amout of space with respect
to the size of the formula. Notice that we do not need to name each variable since each one is defined by its
connections to the different gates (i.e., the number of states of the CA is constant).
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Figure 2: The formula ϕ = (¬x ∨ y ∨ z)∧ (x ∨¬y ∨ z)∧ (¬x ∨ y ∨¬z) represented as a circuit encoded in a two-dimensional CA. On the left a
satisfying assignment of ϕ and on the right its image when all the cells are updated.

Now consider a configuration c representing ϕ in which each gate and wire is colored in gray and each empty
space is not crossed. We define the local function in such a way that it checks that the circuit is consistent, that
the empty spaces are crossed and that there are no non-crossed empty spaces and no gray wires or gates. In that
case an error state is produced. This forces all the cells to activate in order to obtain c as an image and, since the
circuit must be consistent and with output one, there exists a preimage of c if and only if ϕ is satisfied. In fact, if
one cell is not updated it must already contain the same value as in c, which is either a gray gate or wire or a
non-crossed empty space; since at least one cell updates, an error would necessarily be produced. Since encoding
ϕ as a circuit encoded in a CA can be performed in polynomial time, the NP-hardness of the problem follows.

Theorem 13. The ∀-updates preimage existence problem for two-dimensional finite ACA is coNPNP-complete.

Proof. First of all, we show that the problem is in coNPNP. We use a polynomial time NDTM to guess a non-empty
subset of cells to be updated and then we use a query to the NP oracle to verify the existence of a preimage with
the chosen set of cells to be updated; the machine accepts if the answer is positive. If all computations of the
NDTM accept, then for each choice of cells to update there exists a preimage, showing that the considered problem
is contained in coNPNP.

As to hardness, we reduce ∀∃3-SAT [19], which is complete for coNPNP, to it. Let ϕ = ∀X∃Yϕ(X , Y ) be a
quantified formula in 3-CNF over the variables V = X ∪ Y = {x1, . . . , xn}. As in the proof of Theorem 12, we
can build a circuit representation of ϕ as a CA, with the difference that the universally quantified variables are
represented by a universally quantified state (see Figure 3). Out target configuration c is a circuit representing ϕ
with each wire and gate colored in gray and in which each empty space is not crossed.

The local function checks the consistency of the circuit, but with the following modifications:

• The fact that a cell has in the neighborhood (excluding itself) a gray wire or gate (except the universally
quantified ones) or a non-crossed empty space is not considered an error and the other consistency checks
apply (i.e., that the wires are properly connected and the output of the gates is correct).

• Any wire coming out from a black universally quantified gate must be black (or gray), while any wire coming
out from an universally quantified gray gate must be red (or gray).

• Gray gates and wire and empty non-crossed spaces if activated produce an error state.

The previous conditions assure that when all the cells update, except possibly the universally quantified gates, the
value of the universally quantified variables only depend on whether the cells containing the universally quantified
state update or not. Let P be the set of positions in which the universally quantified gates are located in the
configuration. Each subset Q of P thus corresponds to an assignment of the variables in X . When all cells except
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those in P −Q update and the next configuration is c, all the states of the wires starting from a universal gate are
forced according to the specific assignment encoded by Q. The hypothesis that the image is c forces the state of
the wires originating at an existential gate to encode a satisfying assignment to the variables in Y . Therefore, if
there exists a preimage in which all cells update, except the ones in P −Q for each possible subset Q of P, then
the formula ϕ is valid. When not all cells outside P update we are actually considering a subset of one of the
updates already examined. We can then build a preimage for that sub-update by simply taking the preimage c
corresponding to the super-update and “greying-out” the gates and wires in the positions outside P that do not
update. This shows that if there exists a preimage for each update then the formula is valid. On the other hand, if
the formula ϕ is valid, then all the preimages corresponding to updates where all the cells excepts a subset of P
update necessarily exist, since they are simply a circuit representation of a satisfying assignment. As before, all
the other preimages can be obtained by “greying-out” part of these preimages.

Hence, there exists a preimage for c for each possible update if and only if ϕ is valid. Since encoding ϕ as a
circuit encoded in a CA can be performed in polynomial time, the coNPNP-hardness of the problem follows.

It is possible to see an example of configuration and of the preimages satisfying it in Figure 3.

5. Conclusions

In this paper, we have introduced a way of simulating non-deterministic Turing Machines working in space n
by means of ACA and fully-ACA of the same size. The resulting simulation can be performed in a time that is
linear with respect to the time needed by the simulated Turing machine and the non-determinism is introduced
by using different updating sequences. This construction has been used to show that the reachability problem,
that can be formulated in two different ways for ACA and fully-ACA, is PSPACE-complete, as for the reachability
problem in classical CA. When a restriction on the time needed to reach a configuration starting from another one
is added, the asynchronous model behaves differently from the synchronous one, also in terms of complexity. The
restricted reachability problem is P-complete for classical CA, but it is NP-complete or coNP-complete for both
ACA and fully-ACA, in the existential or universal version, respectively. This shows that an asynchronous update
can change the complexity of some decision problems for CA by adding non-determinism.

We have also proved that deciding whether a preimage of a given configuration exists is easy for fully-ACA
(i.e., contained in L), while it depends on the dimension for ACA. For one dimensional ACA the preimage existence
problem in both possible formulations is NL-complete, the same as in classical CA. However, for dimensions
greater than one the complexity increases, depending on the formulation of the problem, and we either have
a NP-complete problem (as in classical CA) or a coNPNP-complete problem, an increase with respect to the
classical case. We have also illustrated a general and easy way to embed formulae represented as circuits in
two-dimensional (synchronous or not) CA and how to use asynchrony to “simulate” universally quantified variables.
This is particularly interesting since, unless coNPNP collapses to NP, this is an action that cannot be performed
with classical CA.

In the future we plan to study the complexity of others decision problems in the ACA and fully-ACA setting.
The problems studied in [20] are, for example, an interesting starting point. A general trend that has emerged
from the results of this paper is that ACA and, to a lesser extent, fully-ACA seems to behave – at least with respect
to the computational complexity point of view – as classical CA enhanced with non-determinism. It would be
interesting to determine if this is also true for other kinds of problem and to derive a general criteria to decide in
which problems this behavior exists.
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Figure 3: On the top, the target configuration c representing ϕ = ∀x∀y∃z�(¬x ∨ z ∨ y) ∧ (x ∨ ¬z ∨ y) ∧ (¬x ∨ z ∨ ¬y)
�

. The other four
configurations represent one preimage of c for each possible assignment of the universally quantified variables. The existence of such preimages
shows that ϕ is valid.
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Foundations of Computer Science 2008, volume 5162 of Lecture Notes in Computer Science, Springer, 2008, pp. 419–430. URL:
http://dx.doi.org/10.1007/978-3-540-85238-4_34.

[17] L. Manzoni, Asynchronous cellular automata and dynamical properties, Natural Computing 11 (2012) 269–276. URL: http://dx.
doi.org/10.1007/s11047-012-9308-y.

[18] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1993.
[19] L.J. Stockmeyer, The polynomial-time hierarchy, Theoretical Computer Science 3 (1976) 1–22. URL: http://dx.doi.org/10.1016/

0304-3975(76)90061-X.
[20] K. Sutner, On the computational complexity of finite cellular automata, Journal of Computer and System Sciences 50 (1995) 87–97.

URL: http://dx.doi.org/10.1006/jcss.1995.1009.
[21] T. Worsch, A note on (intrinsically?) universal asynchronous cellular automata, in: Proceedings of Automata 2010, 14-16 June 2010,

Nancy (France), 2010, pp. 339–350. URL: https://hal.inria.fr/inria-00549645/en.

15

http://dx.doi.org/10.1016/j.tcs.2009.05.004
http://dx.doi.org/10.1016/j.ipl.2012.12.009
http://www.complex-systems.com/abstracts/v02_i02_a02.html
http://www.complex-systems.com/abstracts/v02_i02_a02.html
http://dx.doi.org/10.3233/FI-2012-755
http://www.oldcitypublishing.com/journals/jca-home/jca-issue-contents/jca-volume-9-number-5-6-2014/jca-9-5-6-p-341-355/
http://www.oldcitypublishing.com/journals/jca-home/jca-issue-contents/jca-volume-9-number-5-6-2014/jca-9-5-6-p-341-355/
http://dx.doi.org/10.1007/s11047-013-9386-5
http://dx.doi.org/10.1016/j.ic.2012.02.008
http://dx.doi.org/10.1016/j.tcs.2012.05.013
http://dx.doi.org/10.1016/j.tcs.2013.11.005
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewArticle/dmAB0110/1261
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewArticle/dmAB0110/1261
http://dx.doi.org/10.1016/j.tcs.2006.05.036
http://dx.doi.org/10.1007/11682462_43
http://dx.doi.org/10.1137/0217058
http://dx.doi.org/10.1016/j.tcs.2004.11.021
http://dx.doi.org/10.1016/j.tcs.2004.11.021
http://dx.doi.org/10.1007/978-3-540-85238-4_34
http://dx.doi.org/10.1007/s11047-012-9308-y
http://dx.doi.org/10.1007/s11047-012-9308-y
http://dx.doi.org/10.1016/0304-3975(76)90061-X
http://dx.doi.org/10.1016/0304-3975(76)90061-X
http://dx.doi.org/10.1006/jcss.1995.1009
https://hal.inria.fr/inria-00549645/en

	Introduction
	Basic Notions
	Simulation of NDTM
	Preimage Existence Problems
	Conclusions

