
A Gentle Introduction to Membrane

Systems and Their Computational

Properties

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca

Viale Sarca 336, Building U14, 20126 Milano, Italy

leporati/luca.manzoni/mauri/porreca/zandron@disco.unimib.it

1 Introduction

The theory of computation investigates the nature and properties of algorithmic
procedures. This field emerged in the 20s and 30s of the 20th century from
the work on the philosophy and the foundations of mathematics. Of great
importance and inspiration was David Hilbert’s ambitious program to “dispose
of the foundational questions in mathematics once and for all” [34], that led
to fundamental results in logic such as Gdel’s incompleteness theorems [6], and
ultimately to the birth of recursion theory (nowadays mostly referred to as
computability theory) and computer science itself.

The formal notion of computability that is almost universally adopted today
is due to Alan Turing, who introduced in his ground-breaking paper On com-
putable numbers, with an application to the Entscheidungsproblem [32] a simple,
elegant and convincing mathematical formalisation of the notion of computa-
tion, as it is carried out by a human executor equipped with enough scratch
paper. Turing’s work showed that, as long as we accept his notion of compu-
tation, there exist well-formed mathematical questions whose answer cannot be
computed. In particular, one of the main challenges of Hilbert’s program, the
Entscheidungsproblem (finding a decision procedure for the validity of state-
ments in first-order logic) was proved to be unsolvable.

This formalisation, that rapidly became known as the Turing machine, is still
the reference model for computing devices in theoretical computer science, as it
also enjoys the property of being a good model of actual electronic computers;
this is also due to the fact that it was itself an inspiration for the design of
automatic computing machinery [5].

With the development of computers as a technology, being able to solve
a particular problem proved not to be satisfying: fast, efficient solutions are
needed. This led to the development of computational complexity theory, pio-
neered [9] by Hartmanis and Stearns in the paper On the computational com-
plexity of algorithms [12], that also gives the name to the field. Identifying

1

the notion of “efficient” with “polynomial-time computable” is due [9] to Ed-
monds [7], while the central question of complexity theory, whether P = NP,
arose from the work of Cook [4] and Karp [16]. This question has shaped the
whole development of the field, and still remains open today.

However, the theory of computation is not entirely about Turing machines.
Several authors sought to draw inspiration from the way nature “computes”
in order to define alternative, unconventional computing models, or, from the
opposite point of view, to interpret natural phenomena as computation [1].
For instance, artificial neural networks [21] are inspired by the functioning of
neurons in the brain, and genetic algorithms seek to solve computationally hard
problems by simulating the processes of mutation, mating and natural selection.
A clear example of biological inspiration is given by DNA computing, which
provided an actual in vitro implementation of an algorithm for the Hamilton
path problem [2] (the theory was initiated a few years earlier, particularly by
Head [13]).

Inspired by the work on DNA computing [26], Pun introduced in 1998 [24]
the notion of membrane systems, initially called super-cells, and nowadays usu-
ally known as P systems. Here the computing device is an abstraction of biolog-
ical cells. Unlike in neural networks, we do not deal with cells as atomic objects:
as the name suggests, the focus is on the membranes that define the cells and
their internal compartments, which work together by performing different indi-
vidual functions. The chemical environment of the various compartments are
described in terms of multisets of symbols (i.e., sets in which each symbol has
a multiplicity). Another defining feature of P systems (as they were initially
defined) is maximal parallelism: as many operations as possible are carried out
simultaneously, and no part of the system remains inactive if it can carry out
some part of the computation.

Although P systems have also been investigated from the perspectives of
bioinformatics and systems biology, where they might be used as models of bio-
logical phenomena in computer simulations, most of the research in membrane
computing has been carried out from a language-theoretic (including the seminal
paper [24]), computability-theoretic and complexity-theoretic standpoint.

In the literature, many variants using various kinds of rules and different
features have been considered and investigated in this respect. For example,
the notion of multiset rewriting employed in the original model of P system [24]
is context-sensitive (or cooperative, which is the term normally used in mem-
brane computing). Other classes of P systems, however, possess other features
that make them extremely powerful from a computational perspective: as a con-
sequence, the use of context-free (or non-cooperative) rewriting rules has also
been considered. Here, for the sake of explanation, we will present a simplified
model using only basic ingredients and simple cooperative rewriting rules. Af-
ter presenting some basic definitions, we will first show that such systems are
Turing complete, by simulating register machines, a well known universal com-
puting device, and we will show that direct simulation of Turing machines is
time efficient. Then, by exploiting the possibility of creating new membranes by
division of existing ones, we will show how to solve all problems from the com-
plexity classes NP and PSPACE in polynomial time (and exponential space) by
means of membrane systems. At the end of the chapter, we will shortly discuss
how cooperation can be avoided, and we will provide pointers to the literature
concerning main variants considered in the framework of membrane computing.

2

2 Membrane structures

The main feature of all variants of P systems is their membrane structure. Sev-
eral variants have been proposed in the literature [27], but we consider here
the original cell-like shape [24]: a hierarchy of membranes nested to an arbi-
trary depth. There is a clear bijective mapping between the set of membranes
and the regions they define, delimited by the membrane itself from the outside,
and any membrane immediately included in it from the inside. The outermost
membrane (sometimes called the skin) separates the actual P system from the
surrounding environment, which is a further implied region also playing a role
in the computation. Membranes not containing further membranes inside them
are called elementary ; the others are called nonelementary.

The abstract shape of a membrane structure in any given instant is mathe-
matically represented by a rooted, unordered tree. Here the membranes (equiva-
lently, the regions they delimit) correspond to vertices, the outermost membrane
being associated with the root of the tree, and an edge between two vertices in-
dicates that the corresponding membranes are located one immediately inside
the other; the “parent” and “child” roles are implied by the distance from the
root. The leaves of the tree correspond to elementary membranes, while the
internal nodes correspond to the nonelementary ones. The tree is unordered
(i.e., there is no distinguishable “first” or “leftmost” child) because we do not
keep track of any spatial relation between the membranes other than simple
containment1.

Membranes are not only set apart by their position in the membrane struc-
ture, but also by the role they supposedly perform. This is represented in
P systems by attaching a label taken from a finite set Λ to each membrane (for-
mally, to the vertex representing it in the corresponding unordered tree). As we
shall see later, different labels correspond to different sets of rules that can be
applied to the membranes or their contents. Initially, each membrane must be
given a different label (although two distinct labels might be associated to the
same set of rules), while the process of membrane division may create multiple
membranes sharing the same label.

A membrane structure is traditionally described in a “linear” notation by
means of a string of balanced brackets. Given the unordered rooted tree corre-
sponding to the membrane structure, fix an arbitrary ordering of the children of
each node. The resulting ordered tree, ignoring the node labels, is then uniquely
interpreted as a string of balanced brackets belonging to the language defined
by the following context-free grammar, beginning with the nonterminal S1:

S1 → [S2] S2 → [S2] | S2S2 | ε.

These are all the non-empty strings of balanced brackets having a single out-
ermost pair. The nesting of brackets is induced by the shape of the tree (and
obviously corresponds to the containment relation of the original membrane
structure). Finally, each bracket is subscripted by the label of the correspond-
ing membrane. An example of membrane structure, represented in a pictorial
form, as a tree, and in bracket notation, can be found in Figure 1.

1There exist other variants of P systems, such as the spatial ones, where the positions of
membranes and objects do actually matter [3].

3

h0

h1

h4

h3

h2

h0

h1h2

h3 h4

[
[]h1 [[]h3 []h4]h2

]
h0

Figure 1: A membrane structure, and two formalisms representing it.

3 The content of regions

A single molecule can be represented abstractly as a symbol taken from an alpha-
bet Γ. However, subsets of Γ are not an adequate description of a whole chemical
environment, as they do not carry any information related to the (absolute or
relative) quantities of molecules of the same species. Since the concentrations
(that is, amounts) of chemicals in a region do actually matter from a metabolic
standpoint, we use multisets to describe them.

A multiset w over a set Γ is simply a function w : Γ → N, mapping each
object to its multiplicity. Generalisations of the usual set-theoretic operations
can be defined on the sets of multisets over Γ; for instance, the union of multisets
w1 and w2 is the multiset where, for all a ∈ Γ, the object a has multiplicity
w1(a) + w2(a). From an algebraic point of view, the set of multisets over Γ,
with respect to the operation of union, is the free commutative monoid on Γ.
Compare this to the set Γ? of strings, which is the free monoid on Γ: here the
operation (i.e., string concatenation) is not commutative. When describing the
chemical environment of a region, we are interested in the number of molecules,
but not in any particular ordering of them.

Another equivalent characterisation can be given in terms of equivalence
classes of strings. For each string u ∈ Γ? and each symbol a ∈ Γ, let |u|a be the
number of occurrences of a in u. Now let u and v be strings, and let the binary
relation ' be defined by

u ' v if and only if |u|a = |v|a for all a ∈ Γ.

It is trivial to prove that ' is an equivalence relation, and in particular a con-
gruence relation with respect to the operation of string concatenation. Then,
the set of equivalence classes Γ?/ ' (together with the operation induced by
concatenation) is isomorphic to the set of multisets over Γ (together with the
operation of multiset union). This provides us with a simple way to denote
multisets in writing. Let w be a multiset, and let u be any string such that
w(a) = |u|a for all a ∈ Γ; then, we shall identify w with [u]/' (the equivalence
class of u modulo ') and, furthermore, we shall drop the equivalence class no-
tation, simply writing u for w, as the formal meaning of the symbol is implied;

4

correspondingly, multiset union will be written as string concatenation. This
identification justifies the following (informal) sentence, which is usually found
in the P systems literature: “a multiset w will be represented as a string u,
together with all its permutations”, since permuting the symbols of u does not
change the number of their occurrences.

4 Computation rules

The elements we have described until now, i.e., the membrane structure and
the multisets contained in its regions, define the instantaneous configurations
of P systems. A configuration evolves by means of computation steps, where in
each step some rules inspired by the biology of cells are applied.

4.1 Object evolution rules

A first kind of computation rule describes simple chemical reactions taking place
inside a region. Consider, as an example, the following formula for the burning
of methane as it may be described in a chemistry textbook:

CH4 + 2O2 → CO2 + 2H2O.

This notation describes how a molecule of methane (CH4) reacts with two
molecules of oxygen (O2) yielding a molecule of carbon dioxide (CO2) and two
molecules of water (H2O).2 The molecules on the left-hand side of the arrow
are called reactants or reagents, while those on the right-hand side are called
products.

This kind of reaction corresponds quite closely with a limited form of mul-
tiset rewriting, where a certain submultiset is replaced by another one. The
notation is also quite similar, as for multisets we shall write u → v to indicate
that multiset u is replaced by v. The general notion of multiset rewriting is
more abstract, and it usually disregards the law of conservation of mass. A
general chemical reaction viewed as a multiset rewriting rule possesses a pow-
erful feature from a language-theoretic perspective: it is context-sensitive. For
instance, methane may only burn if oxygen is also present, and we require at
least two molecules of oxygen for each molecule of methane.

The first kind of computation rules used by P systems, called object evolution
rules or rules of type (a), are thus denoted as follows:

[u→ v]h

This rule can be applied inside each membrane labelled by h ∈ Λ, having a
multiset z which contains the multiset u, i.e. u ⊆ z. When the rule is applied,
the multiset of objects defined by u is removed from z and is replaced by the
multiset v.

4.2 Communication rules

The main role of cell membranes is that of delimiting and separating regions
where different functions are performed. However, these distinct regions must

2The molecules involved in this reaction are, in turn, made of several atoms; however, in
this discussion we consider compound objects such as H2O as indivisible.

5

also cooperate: for instance, the products of a chemical reaction occurred in
membrane h1 might be stored inside membrane h2. The cell membranes are
thus selectively permeable, allowing specific molecules to move between regions.

First consider the case when a multiset is absorbed by a membrane. This
kind of rule is called send-in communication rule, or type (b) rule, and is formally
written as:

u []h → [v]h

This rule can be applied to a membrane having label h ∈ Λ; the region located
outside the membrane must also contain at least an instance of multiset u ∈ Γ∗.
The effects of this rule is that the multiset u is removed from the outside region,
and the multiset v ∈ Γ∗ appears inside the membrane. As a restriction, it is
assumed that no object can be brought into the outermost membrane of the
P system from the external environment.

The converse kind of rule describes the process by which a membrane expels
a multiset; these are called send-out communication rules or type (c) rules:

[u]h → []h v

This rule can be applied to a membrane labelled by h ∈ Λ containing an in-
stance of the multiset u. By applying this rule, the system removes u from the
membrane, and places the multiset v ∈ Γ∗ into the region immediately outside
the membrane.

4.3 Division rules

We have already seen that the membrane structure of a cell needs not remain
unchanged during its entire lifespan. In fact, new membranes can be created.
The quintessential example is given by the process of mitosis, whereby a whole
copy of the original cell is produced by division. The process of division also
occurs internally in cells (that is, without involving the outermost cell mem-
brane), as mitochondria also divide by binary fission [17]. In general, division
allows the creation of new “processing units” when the need arises.

The corresponding division rules, or type (d) rules, have the following form:

[u]h → [v]h [w]h

A rule of this kind can be applied to a membrane labelled by h ∈ Λ and con-
taining at least one instance of the multiset u ∈ Γ∗. Its effect is as follows: a
whole new copy of the membrane is created and placed into the same region as
the original one; the contents are also copied, with the exception of the instance
of u mentioned above, which is replaced by an instance of v ∈ Γ∗ in one of the
two resulting membranes, and by w ∈ Γ∗ in the other one. This kind of rule
cannot be applied to the outermost membrane.

Notice that the membrane h can be elementary or nonelementary: the differ-
ence is usually underlined by calling the corresponding rules elementary mem-
brane division and nonelementary membrane division, respectively. In case h is
a nonelementary membrane, all the membranes contained in it (as well as their
content) are copied in both of the new instances of h.

6

5 A formal definition

We are now able to give a precise definition of our model of computation of
interest.

Definition 1. A P system of initial degree d ≥ 1 is a structure Π = (Γ,Λ, µ, wh1
,

. . . , whd
, R) where

• Γ is the alphabet;

• Λ is the finite set of labels;

• µ is the membrane structure, a rooted undirected tree of d nodes labelled
in a one-to-one way by elements of Λ;

• wh1
, . . . , whd

, with h1, . . . , hd ∈ Λ, are multisets over Γ;

• R is a finite set of rules.

For each h ∈ Λ, the multiset wh describes the objects initially located in the
region delimited by the membrane labelled by h.

5.1 Configurations and computations

An instantaneous configuration of Π is given by the rooted unordered tree de-
scribing its current membrane structure, augmented as follows: each node is
labelled by a couple (h,w) where

• h ∈ Λ is the label of the corresponding membrane;

• w is the multiset over Γ contained in the membrane.

A computation step changes the current configuration by applying the rules
in a maximally parallel way, according to the following principles.

• Each membrane can be subject to at most one communication or division
rule per step. Any number of evolution rules can be simultaneously applied
inside the same membrane, except for the restrictions on objects described
below.

• Each object can be subject to at most one rule per step.

• A maximal combination of rules must be applied during each step. Each
object that appears on the left-hand side of an applicable evolution, com-
munication, or division rule must be subject to exactly one of them. We
say that a rule is “applicable” if the label of the membrane containing the
object corresponds to those appearing on the left-hand side of the rule.
The only objects that do not evolve are those associated to no applicable
rule (or to no rule at all).

• Each membrane that appears on the left-hand side of an applicable (i.e.,
having the correct labels on the left-hand side) communication or division
rule must be subject to exactly one of them. The only membranes that
do not evolve are those associated to no applicable rule (or to no rule at
all).

7

• When several maximally parallel combinations of rules can be applied at
the same time, a nondeterministic choice between them is made. As a
consequence, in the general case multiple possible configurations can be
reached by performing a computation step.

• After a legitimate maximally parallel combination of rules has been chosen
(i.e., every membrane and object that can evolve has been assigned to
a rule), the rules are applied in a logical bottom-up (depth-first) way,
from the elementary membranes towards the outermost one. Inside each
membrane in turn, first all object evolution rules are applied, then the
remaining communication or division rule.

The maximal parallel way of applying the rules may be easily visualized as
follows. Note that this is not the only way used in the literature to apply the
rules: other common strategies are sequential application and minimal paral-
lelism, whose details of operation can be found in the Handbook of Membrane
Computing [27]. Assume that a given region of a P system contains a multiset
u of objects and a set R of rules. Each of these rules is either enabled by the
objects in u (that is, the rule could in principle be applied to such objects) or
not enabled, depending upon whether u contains the multiset of objects that
appears in the left hand side (LHS) of the rule. Choose one of the enabled rules,
and mark as used the objects of u that appear in the LHS of the rule. Now
repeat the process with the remaining (unmarked) objects of u: select one of
the rules enabled by them, and mark the objects used by the rule. Repeat the
process until all objects are marked as used, or the remaining objects do not
enable any rule.

Since at each step one rule is chosen in a nondeterministic way, the same
initial multiset u of objects may lead to several different choices of the rules to
be applied. For this reason, in the literature it is usually told that the rules are
applied in a nondeterministic and maximally parallel way. Notice that no rule
is actually applied until all the rules have been selected; they are then applied in
parallel, each one consuming the objects mentioned in its LHS, and producing
all the objects listed in the right hand side. The selection process together with
the parallel application of all selected rules, in each of the regions determined by
the membrane structure, constitutes a single computation step of the P system.
A global clock is assumed, that synchronizes the operation of all the regions of
the system; each computation step takes a single clock tick.

Let us also note that maximal parallelism does not imply that the maximal
number of rules which can be applied with the objects in u will be selected.
Instead, maximal parallelism means that no additional rule should be applicable
in the same step to idle objects of u. The difference between the two approaches
can be seen through a simple example.

Example 2. Assume that a region contains the following set of rules:

r1 : ab→ v1 r2 : c→ v2 r3 : bc→ v3

r4 : a3c2 → v4 r5 : ad→ v5

and the multiset of objects u = a3b2c2 (which is a shorthand for aaabbcc, or any
other permutation of this string).

8

Then, the following multisets of rules can be obtained through the selection
process described above, and are indeed maximally parallel:

{(r1, 2), (r2, 2)}
{(r3, 2)}
{(r1, 1), (r2, 1), (r3, 1)}

Here the notation (ri, n) indicates that the multiplicity of rule ri is n, that is,
rule ri has been selected n times. It is easily seen that fact of being maximally
parallel is not related in any way with the number of rules which is selected to
be applied.

A halting computation of Π is a sequence of configurations (C0, . . . , Ck) start-
ing from the initial one such that every Ci+1 is reachable from Ci by performing
a single computation step, and no rule at all can be applied in Ck. If Π never
reaches a halting configuration, the result is an infinite, non-halting computation
(Ci : i ∈ N).

In the next sections we show that the model of P systems we have defined
is able to:

• simulate register (counter) machines and Turing machines, hence P sys-
tems constitute a universal (in the sense of Turing-complete) model of
computation;

• solve NP-complete problems (and thus all problems in the class NP) in
polynomial time (and exponential space), by exploiting elementary mem-
brane division rules to simulate the computations of nondeterministic Tur-
ing machines;

• solve all problems in the complexity class PSPACE, in polynomial time
and exponential space, by using division rules for nonelementary mem-
branes to simulate the computations of alternating Turing machines.

We just recall that NP is the class of decision problems (equivalently, lan-
guages) which can be solved (resp., accepted) by nondeterministic Turing ma-
chines working in polynomial time with respect to the input size. Similarly,
PSPACE is the class of decision problems (resp., languages) that can be solved
(resp., accepted) by deterministic or nondeterministic Turing machines operat-
ing in polynomial space with respect to the input size. An excellent reference
for the computational properties of these (as well as many others) complexity
classes is [23].

6 Universality of multiset rewriting

Cooperative (or context-sensitive) multiset rewriting rules u → v, even using
only two symbols on the left-hand side, are powerful enough to reach com-
putational universality. This result is actually simple enough to work as an
introductory example.

Let us consider register machines, also called counter machines or program
machines, as described by Minsky [22]. This model, inspired by the working
of electronic computers, is able to compute any recursive function on natural

9

numbers. A register machine consists of a finite number of registers r1, . . . , rn,
each one containing a non-negative integer (i.e., a natural number). The input
of the register machine is located in register r1, while the remaining registers
are initially null (i.e., they contain zero). The behaviour of the counter machine
is described by a finite sequence of instructions, uniquely labelled by natural
numbers, and a program counter stores the label of the instruction currently
being executed. The program counter is, by convention, initially null.

The variant of register machine we consider here only has two kinds of in-
structions. The first kind is an increment instruction, which is denoted by the
syntax

i : inc(r), j

Here i is the label of the instruction, r is the name of a register, and j is an
instruction label. The execution of this instruction causes the increment by one
of the value of register r, and changes the value of the program counter to j.

The second type of instruction is a conditional decrement, with the syntax

i : dec(r), j, k

where i is the label of the instruction, r is a register, and j and k two further
instruction labels. The execution of this instruction depends on the current
value of register r. If this is greater than zero, then it is decremented by one
and the computation proceeds with the instruction labelled by j; otherwise, the
register remains null and the program counter is set to k.

The computation of the register machine begins with the initial value of the
program counter and proceeds by updating it according to the current instruc-
tion. The computation halts when the program counter reaches a value not
associated with any instruction; alternatively, the computation can go on for-
ever if this never happens. Halting computations can be considered to produce,
as output, the final value of register r1.

An instantaneous configuration (i, x1, . . . , xn) of the register machine con-
sists of the value of the program counter i and the values x1, . . . , xn of the
registers r1, . . . , rn. Such configuration can be encoded as a multiset over the
alphabet

{pi : i is a label appearing in the program} ∪ {r1, . . . , rn}

where the multiplicity of rj is exactly the value xj of register rj for 1 ≤ j ≤
n, and exactly one of the pi’s occurs and with multiplicity one, represent-
ing the current value of the program counter. Hence, an arbitrary configu-
ration (i, x1, . . . , xn) of the register machine is encoded as pi r

x1
1 · · · rxn

n .
The instructions of the register machine are simulated by multiset rewrit-

ing rules operating in the maximally parallel way. Each increment instruc-
tion i : inc(r), j is implemented as a single rewriting rule

pi → pjr

which simultaneously replaces the program counter symbol with the updated
one, and increments by one the multiplicity of symbol r as required.

10

A conditional decrement instruction i : dec(r), j, k requires checking whether
symbol r occurs with multiplicity zero or greater than zero; this can be imple-
mented by using appropriately synchronised cooperative rewriting rules [10].
First of all, symbol pi is rewritten by

pi → p′i dr

where symbol dr will try to delete an occurrence of r, while p′i waits one step in
order to allow this decrement to occur:

drr → d′r p′i → p′′i

Notice that the first rule can only be applied when at least one instance of
symbol r occurs: in that case, symbol d′r is produced; otherwise, symbol dr
remains inert and is carried on to the next configuration. Symbol p′′i is able to
discriminate between these two cases by applying one of the following mutually
exclusive rules:

p′′i d
′
r → pj p′′i dr → pk

The rule that is actually applied produces the correct symbol encoding the
updated value of the program counter.

The rules described above, applied to the encoding of a configuration of
the register machine, produce (in up to three steps) the encoding of the next
configuration, obtained by executing the prescribed inc or dec operation. This
procedure halts if and when the simulated register machine halts; in that case,
the output of the register machine can be recovered from the multiplicity of
symbol r1.

7 Efficient simulation of polynomial-time Tur-
ing machines

Although cooperative multiset rewriting rules suffice to attain universality, the
register machines simulated in the previous section are, in general, exponen-
tially slower than the reference model for efficient computation, namely Turing
machines [8].

Turing machines themselves can be simulated by multiset rewriting systems
when the space employed (i.e., the tape length m) is a priori known. The
symbols in a multiset does not, by themselves, possess the linear ordering of the
symbols on the tape of a Turing machine. This can be simulated by indexing the
symbols of the tape alphabet Σ of the Turing machine with integer subscripts
ranging from 1 to m, the space bound previously assumed. This allows us to
encode the first m tape cells (including the blank ones) as a multiset of m
symbols. The current state q of the Turing machine, ranging over the set of
states Q, and the current position i of the tape head (also ranging from 1 to m)
can be encoded by an extra symbol qi, which contains both pieces of information.
For instance, a sample Turing machine configuration is encoded as follows:

a a b a

q

a1 a2 q2 b3 a4 �5 �6

11

a a b a

q

a1 a2 q2 b3 a4 �5 �6

a b b a

r

a1 b2 b3 r3 a4 �5 �6

Figure 2: On the left, a Turing machine performing the transition δ(q, a) =
(r, b,+1) and, on the right, the corresponding rewriting step between two mul-
tisets encoding the configurations of the Turing machine.

Let δ : Q × Σ → Q × Σ × {−1, 0,+1} be the transition function of the Turing
machine. Each transition δ(q, a) = (r, b, d) is implemented by a rewriting rule
for each position 1 ≤ i ≤ m of the tape:

qi ai → ri+d bi

These rules simultaneously update the state and head position of the simulated
Turing machine, and the content of the cell previously located under the tape
head, as exemplified in Figure 2.

This simulation is carried out efficiently, actually in “real time” (each step
of the Turing machine is simulated by a single rewriting step), and shows that
multiset rewriting can be efficient, whenever the space bound is known. This
means that, unlike the register machine simulation (where a single rewriting
system simulates the given register machine on all possible inputs), a family of
rewriting systems is needed, depending on the space bound (which is, ultimately,
a function of the length of the input string).

The rewriting systems of the family differ only with respect to the subscripts
of its symbols, since the rules simulating the transitions of the Turing machine
are simply replicated for each cell index. This means that the family is uni-
form: there exists a single algorithm (and an efficient one on top of that) for
constructing the m-th member of the family, where m is the length of the tape
to be simulated. This echoes similar constructions for models of computation
such as families of Boolean circuits [33], where the shape of each circuit does,
of course, depend on the number of input bits.

8 Simulating nondeterminism with membrane
division

Using membranes allows us to partition the space in multiple regions evolving
in parallel, possibly according to distinct sets of rules. For instance, the rewrit-
ing rule u1 → v1 might only be associated with membrane label h, while the
rewriting rule u2 → v2 is associated with label k. We denote such region-specific

12

rules with the syntax

[u1 → v1]h [u2 → v2]k

A mechanism to allow distinct regions to exchange objects is given by com-
munication rules, either sending multisets towards the region outside a mem-
brane h, or towards an internal membrane k:

[u1]h → []h v1 u2 []k → [v2]k

These rules send out the objects in the multiset u1 (resp., send in u2) towards
the target region, while simultaneously rewriting the multiset into v1 (resp., v2).
Notice that a send-in communication rule is a potential source of nondetermin-
ism, in the case that the region where the rule is applied contains two or more
membranes with label k. By using communication rules, the multisets can be
moved around the P system, allowing distinct processing to occur, such as con-
ditional behaviour or “subroutines”.

The role of membranes becomes dramatic when new membranes can be
created during the computation. The most common approach is membrane
division, which mimics the biological process of binary fission (occurring, for
instance, in cell mitosis). A simple kind of membrane division rule has the form

[u]h → [v]h [w]h

where h is a membrane label and u, v, w are multisets. This rule is applicable to
a region delimited by a membrane with label h that contains u as a submultiset.
Membrane h is duplicated, its content is replicated inside both resulting mem-
branes, with the exception that multiset u is rewritten into v in one membrane,
and into w in the other one. This allows us to differentiate the two membranes,
which can then operate in parallel on distinct data.

If further rules are simultaneously applicable inside membrane h, the usual
semantics [25] requires the division process to logically occur after the remaining
rules have been applied, although this only requires a single time step. This
way, the only difference between the two resulting copies of membrane h is
given by the two multisets v, w on the right-hand side of the division rule.
If membrane h contains further membranes, the whole subtrees are replicated
when the membrane divides.

The power of membrane division stems from the possibility to repeatedly
apply division rules, creating in polynomial time an exponential number of
membranes working in parallel. This allows us, for instance, to simulate nonde-
terminism using parallelism.

Let us consider the Turing machine simulation of Section 7, and extend it to
nondeterministic Turing machines, allowing the transition function δ to assume
(without loss of generality) one or two values for each input pair (q, a). Let
us place the multiset encoding the instantaneous configuration of the Turing
machine inside a membrane h. A deterministic transition δ(q, a) = {(r, b, d)} is
simulated as before, by the rules

[qi ai → ri+d bi]h for 1 ≤ i ≤ m

On the other hand, a nondeterministic transition δ(q, a) = {(r, b, d), (s, c, e)}
can be simulated by dividing the membrane, and carrying on the two possible

13

computations in parallel, inside the two resulting membranes:

[qi ai]h → [ri+d bi]h [si+e ci]h for 1 ≤ i ≤ m

When the simulated Turing machine reaches a halting state, either an accepting
state qyes or a rejecting state qno , the corresponding object qyes,i or qno,i (for
some 1 ≤ i ≤ m, corresponding to the position where the tape head is located
upon halting) is sent out by a communication rule

[qyes,i]h → []h qyes for 1 ≤ i ≤ m
[qno,i]h → []h qno for 1 ≤ i ≤ m

The final result of the simulated Turing machine is given by the multiplicity of
the object qyes in the outside region when the P system halts: acceptance if
there is at least one instance of qyes (corresponding to at least one accepting
computation of the Turing machine), and rejection otherwise (if all simulated
computations were rejecting).

Figure 3 shows the correspondence between the nondeterministic choices of
a Turing machine and the membranes obtained by division and operating in
parallel in the P system simulating it.

9 Simulating alternation using non-elementary
membrane division

The simulation of nondeterministic Turing machines in Section 8 only requires
division rules for elementary membranes. The efficiency of P systems increases3

by exploiting the division of non-elementary membranes, which replicates whole
subtrees of the membrane structure. This makes it possible to simulate not
only nondeterminism, but also alternation, which allows Turing machines to
characterise the complexity class PSPACE in polynomial time [23].

Recall that an alternating Turing machine has a set of states Q partitioned
into existential and universal states. A configuration leads to acceptance if
either

• the state of the machine is accepting, or

• the state of the machine is existential, and at least one successor configu-
ration leads to acceptance, or

• the state of the machine is universal, and all successor configurations lead
to acceptance.

The Turing machine is said to accept its input if the corresponding initial con-
figuration leads to acceptance, and to reject otherwise. A sample alternating
computation tree is shown in Figure 4.

Notice that a standard nondeterministic Turing machine is simply an al-
ternating Turing machine where all states are existential, and thus there is no
alternation between existential and universal.

Let us consider an alternating Turing machine M working on input x;
suppose, without loss of generality [23], that all computations have the same

3Under standard complexity theory assumptions, namely NP 6= PSPACE.

14

yes yesno no no no

t = 0

t = 1

t = 2

t = 3

t = 4

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

Figure 3: The computation tree of a nondeterministic Turing machine, with
the accepting computations highlighted in grey (top), and the corresponding
parallel computation of a P system simulating it (bottom). Each nondetermin-
istic transition of the Turing machine is simulated by a membrane division, as
highlighted by the corresponding arrows of the two diagrams. In the last com-
putation step of the P systems (t = 5) the results of all simulated computations
are sent out to the outermost membrane.

15

1 0 0 1 1

t = 0

t = 1

t = 2

t = 3

t = 4

Figure 4: The computation tree of an alternating Turing machine (left), with
the kind of state, existential or universal, represented by an isomorphic circuit
with or and and gates, respectively (right).

length t. We simulate the machine by means of a P system by generating (via
membrane division rules) a membrane structure isomorphic to the computation
tree of M . The initial membrane structure consists of t + 1 linearly nested
membranes; since the rules will be the same for each membrane, these can be
assumed to be all identically labelled by h. Notice that this last assumption
is not strictly compatible with the formal definition of membrane structure,
but can be simulated by replicating all rules for each membrane label; we can
thus safely make this assumption without changing the computing power of the
model. The encoding of the configuration of M (as described in Section 8) is
initially located inside the outermost membrane.

The simulation of each computation step of M is similar to the one illus-
trated in Section 8, but before performing this simulation, the encoding of the
configuration of M is moved one level deeper in the membrane structure, while
leaving behind an object (q, a) representing the current state of the Turing ma-
chine and the object under its tape head. This process begins with the following
rule:

[qi ai → (q, a) qi,1 ai]h for q ∈ Q, a ∈ Σ, and 1 ≤ i ≤ m

The object qi,j , with 1 ≤ j ≤ m brings the object xj encoding the symbol on
the j-th tape cell of M into the internal membrane:

qi,j xj []h → [q′i,j xj]h for q ∈ Q, 1 ≤ i ≤ m, and 1 ≤ j ≤ m

If there remain objects to bring in (i.e., if j < m), the object q′i,j is sent out
with an incremented subscript:

[q′i,j]h → []h qi,j+1 for q ∈ Q, 1 ≤ i ≤ m, and 1 ≤ j < m

Otherwise, the configuration of M has been completely moved one level deeper
in the membrane structure, while leaving the object (q, a) outside. The cur-
rent computation step of M can now be simulated. If this is a deterministic
transition δ(q, a) = {(r, b, d)}, then the P system applies one of the rewriting

16

rules

[q′i,m ai → ri+d bi]h for 1 ≤ i ≤ m

If the transition is nondeterministic, such as δ(q, a) = {(r, b, d), (s, c, e)}, then
the P system applies a membrane division rule, which is non-elementary in all
computation steps but the last one:

[q′i,m ai]h → [ri+d bi]h [si+e ci]h for 1 ≤ i ≤ m

Any subsequent computation steps are simulated recursively in the same way,
at deeper and deeper levels of the membrane structure.

When a computation of the Turing machine reaches an accepting state qyes
or a rejecting one qno in the last computation step, the corresponding object is
sent out as yes or no, respectively:

[qyes,i]h → []h yes [qno,i]h → []h no for 1 ≤ i ≤ m

The membrane immediately outside receives either one or two objects yes,no
from its child (resp., children) membranes, depending on whether the corre-
sponding transition was deterministic or nondeterministic. The object (q, a)
that was left behind when that transition was simulated stores two pieces of
information: whether the transition was deterministic, and whether the state q
of M at the time was existential or universal. This process is depicted in Fig-
ure 5.

If the transition was nondeterministic and the state existential, then the
membrane receives two objects. The configuration previously located inside
that membrane leads to acceptance if at least one of the two result objects
is yes. This information is recursively propagated back towards the outermost
membrane by using the rules

[(q, a) yes yes]h → []h yes [(q, a) yes no]h → []h yes [(q, a) no no]h → []h no

that is, the two objects are combined by logical disjunction, corresponding to
an existential nondeterministic choice.

Dually, if the transition was nondeterministic and the state universal, the two
result objects are combined by logical conjunction, corresponding to a universal
nondeterministic choice:

[(q, a) yes yes]h → []h yes [(q, a) yes no]h → []h no [(q, a) no no]h → []h no

If the transition was instead deterministic, then the existential or univer-
sal nature of the state is immaterial, and the unique result object is simply
propagated outside:

[(q, a) yes]h → []h yes [(q, a) no]h → []h no

A simple inductive reasoning shows that the yes or no object sent out from the
outermost membrane corresponds to the actual result of the simulated alternat-
ing Turing machine.

17

(q1, a1)

(q1, a1)

(q2, a2)

t = 0 t = 1

t = 2 t = 3

t = 4

(q1, a1)

(q2, a2)

(q3, a3) (q4, a4)

qyes qno qyes qyesqno

(q5, a5) (q6, a6) (q7, a7)

(q3, a3) (q4, a4)

(q2, a2)

(q1, a1)

Figure 5: The computation tree of Figure 4 is simulated by the isomorphic
membrane structure of a P system with membrane division (bottom, t = 4),
which is constructed by using send-in and membrane division from an initially
linear membrane structure (t = 0). The internal membranes contain encodings
of configurations of the Turing machine, while the external ones each contain
an object storing the information needed to combine (by or or and) the results
of the subcomputations being simulated by its children membranes.

18

10 Conclusions and pointers to the literature

In this chapter we tried to give a gentle introduction to P systems, using a
simplified cell-based model. Indeed, since their first appearance in the literature
[24], it has been clear that P systems constitute more a framework to define
classes of abstract models of computation, rather than a specific model. A
number of variants of P systems, and of models of computation inspired by
them, has been proposed in the last years.

A first class of these variants is obtained by removing or adding computa-
tional features to the cell-based model we have described above. So, for example,
when investigating computability and computational complexity issues, a com-
mon observation made in the membrane computing community is that cooper-
ative rules, having two or more objects in their LHS, are too powerful. Indeed,
as we have shown above, it is very easy to obtain the computational power of
register machines and of Turing machines (hence, universality) by means of a
simple set of rules, and it is also easy to solve computationally difficult problems
in polynomial time. Among the ways proposed in literature to avoid coopera-
tive rules, one of the most successful (in terms of number of papers published)
is endowing membranes with an electric charge, which can be either positive
(denoted with +), negative (−), or null (0). The resulting model is called P
systems with active membranes. The rules which can be used in this model are
the same as defined in section 4, with two important differences:

• all the membranes mentioned in each rule have an electrical charge. This
allows us to partition the set of rules associated with the region enclosed
by a membrane into classes, each one composed of rules which can only
be applied under a given charge;

• the LHS of every evolution rule contains just one object. No constraints
are instead imposed on the multiset of objects that these rules can produce
on their right hand side.

Adding electrical charges to membranes allows one to move cooperation from
multisets of objects to single objects and membranes. With this limited version
of cooperation, it clearly becomes more difficult to both obtain the computing
power of Turing-machines and solving NP-complete [25] or PSPACE-complete
[30] problems. However, by using standardized constructions [19] it actually
becomes much easier to design such systems. An extended literature exists on
membrane systems with active membranes, especially related with the capability
of solving computationally hard problems: the reader may consult the references
given at the end of this chapter to find good pointers to start with.

Another example of cell-based membrane systems is P systems with sym-
port/antiport rules [28], in which the rules are cooperative and are inspired
from the coordinated transport of substances across the membranes. Indicated
with x and y two multisets of objects, the rules may be of the following forms:

• (x, in): the objects of x are moved into the current region (where the rule
is defined) from the surrounding region;

• (x, out): the multiset x of objects is moved to the surrounding region;

19

• (x, in; y, out): the objects of x are moved from the surrounding region into
the current region, and simultaneously the objects of multiset y are moved
in the opposite direction.

The first two kinds of rules are called symport rules, whereas the rule (x, in; y, out)
is called an antiport rule. Even inside the class of cell-based symport/antiport
P systems, some variants have been defined and their computational properties
have been investigated; we refer the interested reader to [11] and to chapter 5
of the Handbook of Membrane Computing [27].

Cell-based P systems are not the only model which has been proposed in
the literature. By neglecting the internal structure of cells, and focusing instead
the attention on the connections between different cells, tissue P systems can
be defined [20]. In this model the cells are represented as the nodes of a graph,
whose arcs indicate the connections between the cells, and thus provide a way
to represent inter-cellular communication. Such a communication occurs via
rules that closely resemble the above mentioned antiport rules, and consists
of an exchange of substances between adjacent cells. The interested reader
can find further information in chapter 9 of [27]. Also in this case, several
variants of tissue P systems have been defined: in the original model [20] the
cells had an internal state, a feature which has been dropped very soon since
in the computability and computational complexity setting it is considered too
powerful. On the other way, cell division rules have been added in order to allow
the systems to solve computationally difficult problems [29], just like it happens
with P systems with active membranes. However, the lack of internal structure
prevents them from being able to solve PSPACE-complete problems; perhaps
surprisingly, they turn out to be able to solve in polynomial time exactly the
problems in P#P, the class of problems solved by Turing machines with oracles
for counting problems [18].

Tissue P systems have also inspired spiking neural (SN) P systems [15], in
which the graph of cells represents a neural network, on its turn inspired by
the structure and functioning of living nervous systems. One peculiarity of SN
P systems is that they use only one kind of objects, called the spike. Each
cell – called neuron in this model – contains a set of rules, which may be of
two different types: spiking rules, that send a predefined number of spikes to
all neighbouring neurons, and forgetting rules, that delete a predefined number
of spikes from the neuron itself. Spiking rules are enabled according to the
number of spikes currently contained in the neuron: in fact, each rule has an
associated regular expression which determines a regular set of non-negative
integer numbers, that describe when the rule is enabled to spike. Also in this
case the Handbook of Membrane Computing [27] is a valuable resource to obtain
further information, but the reader should also be aware that several further
variants of spiking neural P systems have been defined and investigated in the
last few years.

For an updated bibliography, we refer the reader to the P systems Web
page [31] as well as to the Web page of the International Membrane Comput-
ing Society [14], that publishes a Bulletin (four issues per year) containing the
latest news about P systems, and promotes the International series of Confer-
ences on Membrane Computing (CMC), and Asian Conferences on Membrane
Computing (ACMC). By consulting the Bulletin and the Proceedings of these
conferences, the reader will discover many other interesting P systems models,

20

such as (enzymatic) numerical P systems, P automata, population P systems,
metabolic P systems, P systems with antimatter, SN P systems with anti-spikes,
and still probabilistic and quantum and asynchronous variants, operating under
different modes of applying the rules. There is an entire world to be explored!

We conclude by remarking that in this chapter we took a theoretical ap-
proach, interested to determine the computational properties of P systems when
considered as abstract models of computation. From the point of view of ap-
plications there is once again a considerable literature on using P systems to
model different kinds of biological and natural phenomena, and an even vaster
number of papers and software tools dealing with efficient simulations of several
variants of P systems, exploiting the parallel computing power of modern GPUs.
The above mentioned references and resources provide also in this case the best
pointers to start with.

References

[1] Scott Aaronson. Why philosophers should care about computational com-
plexity. Technical report, http://eccc.hpi-web.de/report/2011/108/,
2011.

[2] Leonard M. Adleman. Molecular computation of solutions to combinatorial
problems. Science, 266(5187):1021–1024, 1994.

[3] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, Giovanni Par-
dini, and Luca Tesei. Spatial P systems. Natural Computing, 10(1):3–16,
2011.

[4] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, pages 151–158, 1971.

[5] Jack Copeland, editor. The Essential Turing: Seminal Writings in Com-
puting, Logic, Philosophy, Artificial Intelligence, and Artificial Life, Plus
the Secrets of Enigma. Oxford University Press, 2004.

[6] Martin Davis, editor. The Undecidable: Basic Papers on Undecidable
Propositions, Unsolvable Problems and Computable Functions. Raven
Press, 1965.

[7] Jack Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics,
17:449–467, 1965.

[8] Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter
machines and counter languages. Theory of Computing Systems, 2(3):265–
283, 1968.

[9] Lance Fortnow and Steve Homer. A short history of computational com-
plexity. Bulletin of the European Association for Theoretical Computer
Science, 80:95–133, 2003.

[10] Pierluigi Frisco. P systems, Petri nets, and program machines. In Rudolf
Freund, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors,

21

Membrane Computing, 6th International Workshop, WMC 2005, volume
3850 of Lecture Notes in Computer Science, pages 209–223. Springer, 2006.

[11] Pierluigi Frisco. Computing with Cells: Advances in Membrane Computing.
Oxford University Press, New York, NY, USA, 2009.

[12] Juris Hartmanis and Richard E. Stearns. On the computational complex-
ity of algorithms. Transactions of the American Mathematical Society,
117:285–306, 1965.

[13] Tom Head. Formal language theory and DNA: An analysis of the genera-
tive capacity of specific recombinant behaviors. Bulletin of Mathematical
Biology, 49(6):737–759, 1987.

[14] International Membrane Computing Society (IMCS). http:

//membranecomputing.net/.

[15] Mihai Ionescu, Gheorghe Păun, and Takashi Yokomori. Spiking neural P
systems. Fundamenta Informaticae, 71(2,3):279–308, 2006.

[16] Richard M. Karp. Reducibility among combinatorial problems. In Com-
plexity of Computer Computations, pages 85–104. Plenum Press, 1972.

[17] Tsuneyoshi Kuroiwa, Haruko Kuroiwa, Atsushi Sakai, Hidenori Takahashi,
Kyoko Toda, and Ryuuichi Itoh. The division apparatus of plastids and
mitochondria. International Review of Cytology, 181:1–41, 1998.

[18] Alberto Leporati, Luca Manzoni, Giancarlo Mauri, Antonio E. Porreca,
and Claudio Zandron. Characterising the complexity of tissue P systems
with fission rules. Journal of Computer and System Sciences, 90:115–128,
2017.

[19] Alberto Leporati, Luca Manzoni, Giancarlo Mauri, Antonio E. Porreca,
and Claudio Zandron. A toolbox for simpler active membrane algorithms.
Theoretical Computer Science, 673:42–57, 2017.

[20] Carlos Mart́ın-Vide, Gheorghe Păun, Juan Pazos, and Alfonso Rodŕıguez-
Patón. Tissue P systems. Theoretical Computer Science, 296(2):295–326,
2003.

[21] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics, 7:115–
133, 1943.

[22] Marvin Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
1967.

[23] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1993.

[24] Gheorghe Păun. Computing with membranes. Journal of Computer and
System Sciences, 61(1):108–143, 2000.

[25] Gheorghe Păun. P systems with active membranes: Attacking NP-complete
problems. Journal of Automata, Languages and Combinatorics, 6(1):75–90,
2001.

22

[26] Gheorghe Păun. Membrane computing: History and brief introduction. In
Erol Gelenbe and Jean-Pierre Kahane, editors, Fundamental Concepts in
Computer Science, pages 17–41. Imperial College Press, 2009.

[27] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The
Oxford Handbook of Membrane Computing. Oxford University Press, 2010.

[28] Andrei Păun and Gheorghe Păun. The power of communication: P systems
with symport/antiport. New Generation Computing, 20(3):295–305, 2002.

[29] Gheorghe Păun, Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez. Tis-
sue P systems with cell division. International Journal of Computers, Com-
munications & Control, 3(3):295–303, 2008.

[30] Petr Sośık and Alfonso Rodŕıguez-Patón. Membrane computing and com-
plexity theory: A characterization of PSPACE. Journal of Computer and
System Sciences, 73(1):137–152, 2007.

[31] P systems web site. http://ppage.psystems.eu/.

[32] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
42:230–265, 1936.

[33] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Ap-
proach. Texts in Theoretical Computer Science: An EATCS Series.
Springer, 1999.

[34] Richard Zach. Hilbert’s program then an now. In Dale Jacquette, editor,
Philosophy of Logic, volume 5, pages 411–447. Elsevier, 2006.

23

