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Abstract. We study the dynamical behavior of linear higher-order cellular
automata (HOCA) over Zm. In standard cellular automata the global state of
the system at time t only depends on the state at time t − 1, while in HOCA
it is a function of the states at time t − 1, . . . , t − n, where n ≥ 1 is the
memory size. In particular, we provide easy-to-check necessary and sufficient
conditions for a linear HOCA over Zm of memory size n to be sensitive to the
initial conditions or equicontinuous. Our characterizations of sensitivity and
equicontinuity extend the ones shown in [23] for linear cellular automata (LCA)
over Zn

m in the case n = 1. We also prove that linear HOCA over Zm of memory
size n are indistinguishable from a subclass of LCA over Zn

m. This enables to
decide injectivity and surjectivity for linear HOCA over Zm of memory size n by
means of the decidable characterizations of injectivity and surjectivity provided
in [2] and [20] for LCA over Zn

m.

1 Introduction

Cellular automata (CA) are well-known formal models of natural computing which
have been successfully applied in a wide number of fields to simulate complex
phenomena involving local, uniform, and synchronous processing (for recent results
and an up-to date bibliography on CA, see [25, 16, 7, 1, 6], while for other models
of natural computing see for instance [12, 9, 17]). More formally, a CA is made of
an infinite set of identical finite automata arranged over a regular cell grid (usually
Zd in dimension d) and all taking a state from a finite set S called the set of states.
In this paper, we consider one-dimensional CA. A configuration is a snapshot of all
states of the automata, i.e., a function c : Z→ S. A local rule updates the state of each
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automaton on the basis of its current state and the ones of a finite set of neighboring
automata. All automata are updated synchronously. In the one-dimensional settings,
a CA is a structure 〈S, r, f 〉 where r ∈ N is the radius and f : S2r+1→ S is the local
rule which updates, for each i ∈ Z, the state of the automaton in the position i of
the grid Z on the basis of states of the automata in the positions i − r, . . . , i + r. A
configuration is an element of SZ and describes the (global) state of the CA. The
feature of synchronous updating induces the following global rule F : SZ → SZ

defined as
∀c ∈ SZ,∀i ∈ Z, F(c)i = f (ci−r , . . . ci+r) .

As such, the global map F describes the change from any configuration c at any time
t ∈ N to the configuration F(c) at t + 1 and summarises the main features of the
CA model, namely, the fact that it is defined through a local rule which is applied
uniformly and synchronously to all cells.

Because of a possible inadequacy, in some contexts, of every single one of the
three defining features, variants of the original CA model started appearing, each
one relaxing one among these three features. Asynchronous CA relax synchrony
(see [18, 26, 10, 11, 8] for instance), non-uniform CA relax uniformity ([15, 13, 14]),
while hormonal CA (for instance) relax locality [4]. However, from the mathematical
point of view all those systems, as well as the original model, fall in the same class,
namely, the class of autonomous discrete dynamical systems (DDS) and one could
also precise memoryless systems.

In [27], Toffoli introduced higher-order CA (HOCA), i.e., variants of CA in which
the updating of the state of a cell also depends on the past states of the cell itself and
its neighbours. In particular, he showed that any arbitrary reversible linear HOCA can
be embedded in a reversible linear CA (LCA), where linear means that the local rule
is linear. Essentially, the trick consisted in memorizing past states and recover them
later on. Some years later, Le Bruyn and Van Den Bergh explained and generalized
the Toffoli construction and proved that any linear HOCA having the ring S = Zm as
alphabet and memory size n can be simulated by a linear CA over the alphabet Zn

m (see
the precise definition in Section 2) [2]. In this way, as we will see, a practical way to
decide injectivity (which is equivalent to reversibility in this setting) and surjectivity
of HOCA can be easily derived by the characterization of the these properties for the
corresponding LCA simulating them. Indeed, in [2] and [20], characterizations of
injectivity and surjectivity of a LCA over Zn

m are provided in terms of properties of
the determinant of the matrix associated with it, where the determinant turns out to
be another LCA (over Zm). Since the properties of LCA over Zm (i.e., LCA over Zn

m
with n= 1) have been extensively studied and related decidable characterizations
have been obtained [24, 3, 5], one derives the algorithms to decide injectivity and
surjectivity for LCA over Zn

m and, then, as we will see, also for HOCA over Zm of
memory size n, by means of the associated matrix. The purpose of the present paper
is to study, in the context of linear HOCA, sensitivity to the initial conditions and
equicontinuity, where the former is the well-known basic component and essence of
the chaotic behavior of a DDS, while the latter represents a strong form of stability.
To do that, we put in evidence that any linear HOCA over Zm of memory size n is not
only simulated by but also topologically conjugated to a LCA over Zn

m defined by a
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matrix having a specific form. Thus, in order to decide injectivity and surjectivity for
linear HOCA over Zm of memory size n, one can use the decidable characterization
provided in [2] and [20] for deciding the same properties for LCA over Zn

m by means
of that specific matrix. As main result, we prove that sensitivity to the initial condition
and equicontinuity are decidable properties for linear HOCA over Zm of memory
size n (Theorem 2). In particular we provide a decidable characterization of those
properties, in terms of the matrix associated with a linear HOCA. Remark that if
n = 1, starting from our characterizations one recovers exactly the well known
characterizations of sensitivity and equicontinuity for LCA over Zm.

2 Higher-Order CA and Linear CA

We begin by reviewing some general notions and introducing notations we will use
throughout the the paper.

A discrete dynamical system (DDS) is a pair (X ,F) where X is a space equipped with a
metric, i.e., a metric space, and F is a transformation on X which is continuous with
respect to that metric. The dynamical evolution of a DDS (X ,F) starting from the initial
state x (0) ∈ X is the sequence {x (t)}t∈N ⊆ X where x (t) = F t(x (0)) for any t ∈ N.
When X = SZ for some set finite S, X is usually equipped with the metric d defined
as follows ∀c, c′ ∈ SZ, d(c, c′) = 1

2n , where n = min{i ≥ 0 : ci 6= c′i or c′−i 6= c′−i}.
Recall that SZ is a Cantor space.

Any CA 〈S, r, f 〉 defines the DDS (SZ, F), where F is the CA global rule (which is
continuous). From now on, for the sake of simplicity, we will sometimes identify a
CA with its global rule F or with the DDS (SZ, F).

Recall that two DDS (X ,F) and (X ′,F ′) are topologically conjugated if there exists
a homeomorphism φ : X 7→ X ′ such that F ′ ◦φ = φ ◦F , while the product of (X ,F)
and (X ′,F ′) is the DDS (X ×X ′,F×F ′) where F×F ′ is defined as ∀(x , x ′) ∈ X ×X ′,
(F ×F ′)(x , x ′) = (F(x),F ′(x ′)).

Notations 1 For all i, j ∈ Z with i ≤ j, we write [i, j] = {i, i + 1, . . . , j} to denote the
interval of integers between i and j. For any n ∈ N and any set Z the set of all n× n
matrices with coefficients in Z and the set of Laurent polynomials with coefficients in
Z will be noted by Mat (n, Z) and Z

�

X , X−1
�

, respectively. In the sequel, bold symbols
are used to denote vectors, matrices, and configurations over a set of states which is a
vectorial space. Moreover, m will be an integer bigger than 1 and Zm = {0, 1, . . . , m−1}
the ring with the usual sum and product modulo m. For any x ∈ Zn (resp., any matrix
M(X ) ∈ Mat

�

n,Z
�

X , X−1
��

), we will denote by [x ]m ∈ Zn
m (resp., [M(X )]m), the

vector (resp., the matrix) in which each component x i of x (resp., every coefficient of
each element of M(X )) is taken modulo m. Finally, for any matrix M(X ) ∈ Zm

�

X , X−1
�

and any t ∈ N, the t-th power of M(X ) will be noted more simply by M t(X ) instead of
(M(X ))t .

Definition 1 (Higher-Order Cellular Automata). A Higher-Order Cellular Automata
(HOCA) is a structure H = 〈k, S, r, h〉 where k ∈ N with k ≥ 1 is the memory size, S is
the alphabet, r ∈ N is the radius, and h: S(2r+1)k → S is the local rule. Any HOCA H in-
duces the global rule H :

�

SZ
�k →

�

SZ
�k

associating any vector e = (e1, . . . , ek) ∈
�

SZ
�k
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of k configurations of SZ with the vector H(e) ∈
�

SZ
�k

such that H(e) j = e j+1 for each

j 6= k and ∀i ∈ Z, H(e)ki = h







e1
[i−r,i+r]

...
ek
[i−r,i+r]






. In this way, H defines the DDS

�

�

SZ
�k

, H
�

.

As with CA, we identify a HOCA with its global rule or the DDS defined by it.

Remark 1. It is easy to check that for any HOCA H = 〈k, S, r, h〉 there exists a CA



Sk, r, f
�

which is topologically conjugated to H.

The study of the dynamical behaviour of HOCA is still at its early stages; a few results
are known for the class of linear HOCA, namely, those HOCA defined by a local rule
f which is linear, i.e., S is Zm and there exist coefficients a j

i ∈ Zm ( j = 1, . . . , k and
i = −r, . . . , r) such that for any element

x =





x1
−r . . . x1

r
...

...
...

x k
−r . . . x k

r



 ∈ Z(2r+1)k
m , f (x ) =





k
∑

j=1

r
∑

i=−r

a j
i x j

i





m

.

Clearly, linear HOCA are additive, i.e., ∀c,d ∈
�

ZZm
�k

, H(c) +H(d), where, with an

abuse of notation, + denotes the extension of the sum over Zm to both ZZm and
�

ZZm
�k

.
In [2], a much more convenient representation is introduced for the case of linear

HOCA (in dimension d = 1) by means of the following notion.

Definition 2 (Linear Cellular Automata). A Linear Cellular Automaton (LCA) is
a CA L =




Zn
m, r, f

�

where the local rule f : (Zn
m)

2r+1 → Zn
m is defined by 2r + 1

matrices M−r , . . . , M0, . . . , M r ∈ Mat (n,Zm) as follows: f (x−r , . . . , x 0, . . . , x r) =
�∑r

i=−r M i · x i

�

m for any (x−r , . . . , x 0, . . . , x r) ∈ (Zn
m)

2r+1.

Remark 2. LCA have been strongly investigated in the case n = 1 and all the dynami-
cal properties have been characterized in terms of the 1×1 matrices (i.e., coefficients)
defining the local rule, in any dimension too [24, 3].

We recall that any linear HOCA H can be simulated by a suitable LCA, as shown in [2].
Precisely, given a linear HOCA H = 〈k,Zm, r, h〉, where h is defined by the coefficients
a j

i ∈ Zm, the LCA simulating H is L =



Zk
m, r, f

�

with f defined by following matrices

M0 =





















0 1 0 . . . 0 0

0 0 1
... 0 0

0 0 0
... 0 0

...
...

...
. . .

. . .
...

0 0 0 . . . 0 1
a1

0 a2
0 a3

0 . . . ak−1
0 ak

0





















, and M i =

















0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
a1

i a2
i a3

i . . . ak−1
i ak

i

















, (1)

for each i ∈ [−r, r] with i 6= 0.
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Remark 3. We want to put in evidence that a stronger result actually holds (easy
proof, important remark): any linear HOCA H is topologically conjugated to the LCA
L defined by the matrices in (1). Clearly, the converse also holds: for any LCA defined
by the matrices in (1) there exists a linear HOCA which is topologically conjugated
to it. In other words, up to a homeomorphism the whole class of linear HOCA is
identical to the subclass of LCA defined by the matrices above introduced. In the
sequel, we will call L the matrix presentation of H.

We are now going to show a stronger and useful new fact, namely, that the class
of linear HOCA is nothing but the subclass of LCA represented by a formal power
series which is a matrix in Frobenius normal form. Before proceeding, let us recall the
formal power series (fps) which have been successfully used to study the dynamical
behaviour of LCA in the case n = 1 [19, 24]. The idea of fps is that configurations
and global rules are represented by suitable polynomials and the application of the
global rule turns into multiplications of polynomials. In the more general case of
LCA over Zn

m, a configuration c ∈ (Zn
m)
Z can be associated with the fps

P c(X ) =
∑

i∈Z

c iX
i =





c1(X )
...

cn(X )



=





∑

i∈Z c1
i X i

...
∑

i∈Z cn
i X i



 .

Then, if F is the global rule of a LCA defined by M−r , . . . , M0, . . . , M r , one finds
P F(c)(X ) = [M(X )P c(X )]m where

M(X ) =

�

r
∑

i=−r

M iX
−i

�

m

is the finite fps associated with the LCA F . In this way, for any integer t > 0 the fps
associated with F t is M(X )t , and then P F t (c)(X ) = [M(X )t P c(X )]m . Throughout
this paper, M(X )t will refer to [M(X )t]m.

A matrix M(X ) ∈ Mat
�

n, Z
�

X , X−1
��

is in Frobenius normal form if

M(X ) =





























0 1 0 . . . 0 0

0 0 1
... 0 0

0 0 0
... 0 0

...
...

...
. . .

. . .
...

0 0 0 . . . 0 1

m0(X )m1(X )m2(X ) . . . mn−2(X )mn−1(X )





























(2)

where each mi(X ) ∈ Z
�

X , X−1
�

. From now on, m(X ) will always make reference to
the n-th row of a matrix M(X ) ∈ Mat

�

n, Z
�

X , X−1
��

in Frobenius normal form.

Definition 3 (Frobenius LCA). A LCA F over the alphabet Zn
m is said to be a Frobenius

LCA if the fps M(X ) ∈ Mat
�

n,Zm

�

X , X−1
��

associated with F is in Frobenius normal
form.
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It is immediate to see that a LCA is a Frobenius one iff it is defined by the matrices
in (1), i.e., iff it is topologically conjugated to a linear HOCA. This fact together with
Remark 3 and Definition 3, allow us to state the following

Proposition 1. Up to a homeomorphism, the class of linear HOCA over Zm of memory
size n is nothing but the class of Frobenius LCA over Zn

m.

Remark 4. Actually, in literature a matrix is in Frobenius normal form if either it
or its transpose has a form as in (2). Since any matrix in Frobenius normal form
is conjugated to its transpose, any Frobenius LCA F is topologically conjugated to
a LCA G such that the fps associated with G is the transpose of the fps associated
with G. In other words, up to a homeomorphism, such LCA G, linear HOCA, and
Frobenius LCA form the same class.

From now on, we will focus on Frobenius LCA, i.e., matrix presentations of linear
HOCA. Indeed, they allow convenient algebraic manipulations that are very useful
to study formal properties of linear HOCA. For example, in [2] and [20], the authors
proved decidable characterization for injectivity and surjectivity for LCA in terms of
the matrix M(X ) associated to them. We want to stress that, by Remark 3 and Defini-
tion 3, one can use these characterizations for deciding injectivity and surjectivity
of linear HOCA. In this paper we are going to adopt a similar attitude, i.e., we are
going to characterise the dynamical behaviour of linear HOCA by the properties of
the matrices in their matrix presentation.

3 Dynamical properties

In this paper we are particularly interested to the so-called sensitivity to the initial
conditions and equicontinuity. As dynamical properties, they represent the main
features of instable and stable DDS, respectively. The former is the well-known basic
component and essence of the chaotic behavior of DDS, while the latter is a strong
form of stability.

Let (X ,F) be a DDS. The DDS (X ,F) is sensitive to the initial conditions (or simply
sensitive) if there exists ε > 0 such that for any x ∈ X and any δ > 0 there is an
element y ∈ X such that d(y, x) < δ and d(Fn(y),Fn(x)) > ε for some n ∈ N.
Recall that, by Knudsen’s Lemma [21], (X ,F) is sensitive iff (Y,F) is sensitive where
Y is any dense subset of X which is F -invariant, i.e., F(Y) ⊆ Y.

In the sequel, we will see that in the context of LCA an alternative way to study
sensitivity is via equicontinuity points. An element x ∈ X is an equicontinuity point for
(X ,F) if ∀ε > 0 there exists δ > 0 such that for all y ∈ X , d(x , y)< δ implies that
d(Fn(y),Fn(x)) < ε for all n ∈ N. The system (X ,F) is said to be equicontinuous
if ∀ε > 0 there exists δ > 0 such that for all x , y ∈ X , d(x , y) < δ implies that
∀n ∈ N, d(Fn(x),Fn(y)) < ε. Recall that any CA (SZ, F) is equicontinuous if and
only if there exist two integers q ∈ N and p > 0 such that Fq = Fq+p [22]. Moreover,
for the subclass of LCA defined by n= 1 the following result holds:

Theorem 1 ([24]). Let (ZZm, F) be a LCA where the local rule f : (Zm)2r+1 → Zm is
defined by 2r + 1 coeffiecients m−r , . . . , m0, . . . , mr ∈ Zm. Denote by P the set of prime
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factors of m. The following statements are equivalent: i) F is sensitive to the initial
conditions; ii) F is not equicontinuous; iii) there exists a prime number p ∈ P which
does not divide gcd(m−r , . . . , m−1, m1, . . . , mr).

The dichotomy between sensitivity and equicontinuity still holds for general LCA.

Proposition 2. Let L=



Zn
m, r, f

�

be a LCA where the local rule f : (Zn
m)

2r+1→ Zn
m is

defined by 2r + 1 matrices M−r , . . . , M0, . . . , M r ∈ Mat (n,Zm). The following state-
ments are equivalent: i) F is sensitive to the initial conditions; ii) F is not equicontinuous;
iii)

�

�{M(X )i , i ≥ 1}
�

�=∞.

Proof. It is clear that conditions ii) and iii) are equivalent. The equivalence between
i) and ii) is a consequence of linearity of F and Knudsen’s Lemma applied on the
subset of the finite configurations, i.e., those having a state different from the null
vector only in a finite number of cells. ut

An immediate consequence of Proposition 2 is that any characterization of sensitivity
to the initial conditions in terms of the matrices defining LCA over Zn

m would also
provide a characterization of equicontinuity. In the sequel, we are going to show that
such a characterization actually exists. First of all, we recall a result that helped in
the study of dynamical properties in the case n= 1 and we now state it in a more
general form for LCA over Zn

m (immediate generalisation of the result in [3, 5]).
Let

�

(Zn
m)
Z, F

�

be a LCA and let q be any factor of m. We will denote by [F]q the
map [F]q : (Zn

q)
Z→ (Zn

q)
Z defined as [F]q (c) = [F(c)]q, for any c ∈ (Zn

q)
Z.

Lemma 1 ([3, 5]). Consider any LCA
�

(Zn
m)
Z, F

�

with m = pq and gcd(p, q) = 1. It

holds that the given LCA is topologically conjugated to
�

(Zn
p)
Z × (Zn

q)
Z, [F]p × [F]q

�

.

As a consequence of Lemma 1, if m = pk1
1 · · · p

kl
l is the prime factor decomposition

of m, any LCA over Zn
m is topologically conjugated to the product of LCAs over Zn

p
ki
i

.

Since sensitivity is preserved under topological conjugacy for DDS over a compact
space and the product of two DDS is sensitive if and only if at least one of them
is sensitive, we will study sensitivity for Frobenius LCA over Zn

pk . We will show a
decidable characterization of sensitivity to the initial conditions for Frobenius LCA
over Zn

pk (Lemma 8). Such a decidable characterization together with the previous
remarks about the decomposition of m, the topological conjugacy involving any LCA
over Zn

m and the product of LCAs over Zn
p

ki
i

, and how sensitivity behaves with respect

to a topological conjugacy and the product of DDS, immediately lead to state the
main result of the paper.

Theorem 2. Sensitivity and Equicontinuity are decidable for Frobenius LCA over Zn
m,

or, equivalently, for linear HOCA over Zm of memory size n.

4 Sensitivity of Frobenius LCA over Zn
pk

In order to study sensitivity of Frobenius LCA over Zn
pk , we introduce two concepts

about Laurent polynomials.
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Definition 4 (deg+ and deg−). Given any polynomial p(X ) ∈ Zpk

�

X , X−1
�

, the pos-
itive (resp., negative) degree of p(X ), denoted by deg+[p(X )] (resp., deg−[p(X )])
is the maximum (resp., minimum) degree among those of the monomials having both
positive (resp., negative) degree and coefficient which is not multiple of p. If there is
no monomial satisfying both the required conditions, then deg+[p(X )] = 0 (resp.,
deg−[p(X )]=0).

Definition 5 (Sensitive polynomial). A polynomial p(X ) ∈ Zpk

�

X , X−1
�

is sensitive
if either deg+[p(X )]> 0 or deg−[p(X )]< 0. As a consequence, a Laurent polynomial
p(X ) is not sensitive iff deg+[p(X )] = deg−[p(X )] = 0.

Trivially, it is decidable to decide whether a Laurent polynomial is sensitive.

Remark 5. Consider a matrix M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

in Frobenius normal
form. The characteristic polynomial of M(X ) is then P (y) = (−1)n(−m0(X ) −
m1(X )y − · · · −mn−1(X )yn−1 + yn). By the Cayley-Hamilton Theorem, one obtains

Mn(X ) =mn−1(X )M(X )
n−1 + · · ·+m1(X )M(X )

1 +m0(X )I . (3)

We now introduce two further matrices that will allow us to access the information
hidden inside M(X ).

Definition 6 (U(X ), L(X ), d+, and d−). For any matrix M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

in Frobenius normal form the matrices U(X ), L(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

associated
with M(X ) are the matrices in Frobenius normal form where each component ui(X )
and li(X ) (with i = 0, . . . , n− 1) of the n-th row u(X ) and l(X ) of U(X ) and L(X ),
respectively, is defined as follows:

ui(X ) =

¨

monomial of degree deg+[mi(X )] inside mi(X ) if d+i = d+

0 otherwise

li(X ) =

¨

monomial of degree deg−[mi(X )] inside mi(X ) if d−i = d−

0 otherwise
,

where d+i =
deg+[mi(X )]

n−i , d−i =
deg−[mi(X )]

n−i , d+ =max{d+i }, and d− =min{d−i }.

Definition 7 (cM(X ) and M(X )). For any Laurent polynomial p(X ) ∈ Zpk

�

X , X−1
�

,
bp(X ) and p(X ) are defined as the Laurent polynomial obtained from p(X ) by removing
all the monomials having coefficients that are multiple of p and p(X ) = p(X )− bp(X ),
respectively. These definitions extend component-wise to vectors. For any matrix M(X ) ∈
Mat

�

n,Zpk

�

X , X−1
��

in Frobenius normal form, cM(X ) and M(X ) are defined as
the matrix obtained from M(X ) by replacing its n-th row m(X ) with cm(X ) and
M(X ) = M(X )−cM(X ), respectively.

Definition 8 (Graph GM). Let M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

be any matrix in Frobe-
nius normal form. The graph GM = 〈VM , EM〉 associated with M(X ) is such that
VM = {1, . . . , n} and EM = {(h, k) ∈ V 2

M |M(X )
h
k 6= 0}. Moreover, each edge (h, k) ∈ EM

is labelled with M(X )hk.
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Clearly, for any matrix M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

in Frobenius normal form, any
natural t > 0, and any pair (h, k) of entries, the element M t(X )hk is the sum of the
weights of all paths of length t starting from h and ending to k, where the weight of
a path is the product of the labels of its edges.

Lemma 2. Let p > 1 be a prime number and a, b ≥ 0, k > 0 be integers such that
1≤ a < pk and gcd(a, p) = 1. Then, [a+ pb]pk 6= 0.

Lemma 3. Let p > 1 be a prime number and h, k be two positive integers. Let l1, . . . , lh
and α1, . . . ,αh be positive integers such that l1 < l2 < · · ·< lh and for each i = 1, . . . , h
both 1≤ αi < pk and gcd(αi , p) = 1 hold. Consider the sequence b : Z→ Zpk defined
for any l ∈ Z as bl =

�

α1 bl−l1 + · · ·+αh bl−lh

�

pk if l > 0, b0 = 1, and bl = 0, if l < 0.
Then, it holds that [bl]p 6= 0 for infinitely many l ∈ N.

For any matrix M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

in Frobenius normal form, we are
now going to study the behavior of U t(X ) and Lt(X ), and, in particular, of their
elements U t(X )nn and Lt(X )nn. These will turn out to be crucial in order to establish
the sensitivity of the LCA defined by M(X ).

Notations 2 For a sake of simplicity, for any matrix M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

in
Frobenius normal form, from now on we will denote by u(t)(X ) and l(t)(X ) the elements
(U t(X ))nn and Lt(X )nn, respectively.

Lemma 4. Let M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

be a matrix such that M(X ) = ÒN(X )
for some N(X ) ∈ Mat

�

n,Zpk

�

X , X−1
��

in Frobenius normal form. For any natural
t > 0, u(t)(X ) (resp., l(t)(X )) is either null or a monomial of degree td+ (resp., td−).

Proof. We show that the statement is true for u(t)(X ) (the proof concerning l(t)(X )
is identical by replacing d+, U(X ) and related elements with d−, L(X ) and related
elements). For each i ∈ VU , let γi be the simple cycle of GU from n to n and passing
through the edge (n, i). Clearly, γi is the path n → i → i + 1 . . . → n − 1 → n
(with γn the self-loop n → n) of length n − i + 1 and its weight is the monomial
ui−1(X ) of degree (n − i + 1)d+. We know that u(t)(X ) is the sum of the weights
of all cycles of length t starting from n and ending to n in GU if at least one of
such cycles exists, 0, otherwise. In the former case, each of these cycles can be
decomposed in a certain number s ≥ 1 of simple cycles γ1

j1
, . . . ,γs

js
of lengths giving

sum t, i.e., such that
∑s

i=1(n− ji + 1) = t. Therefore, (U t(X ))nn is a monomial of
degree

∑s
i=1(n− ji + 1)d+ = td+. ut

Lemma 5. Let M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

be any matrix in Frobenius normal
form. For every integer t ≥ 1 both the following recurrences hold

u(t)(X ) = un−1(X )u
(t−1)(X ) + · · ·+u1(X )u

(t−n+1)(X ) +u0(X )u
(t−n)(X ) (4)

l(t)(X ) = ln−1(X )l
(t−1)(X ) + · · ·+ l1(X )l(t−n+1)(X ) + l0(X )l

(t−n)(X ) (5)

with initial conditions u(0)(X ) = l(0)(X ) = 1, and u(l)(X ) = l(l)(X ) = 0 for l < 0.
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Proof. We show the recurrence involving u(t)(X ) (the proof for l(t)(X ) is identical
by replacing U(X ) and its elements with L(X ) and its elements). Since U(X ) is in
Frobenius normal form too, by (3), Recurrence (4) holds for every t ≥ n. It is clear
that u(0)(X ) = 1. Furthermore, by the structure of the graph GU and the meaning of
U(X )nn, Equation (4) is true under the initial conditions for each t = 1, . . . , n− 1. ut

Lemma 6. Let M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

be a matrix such that M(X ) = ÒN(X )
for some matrix N(X ) ∈ Mat

�

n,Zpk

�

X , X−1
��

in Frobenius normal form. Let υ(t)
(resp., λ(t)) be the coefficient of u(t)(X ) (resp., l(t)(X )). It holds that gcd[υ(t), p] = 1
(resp., gcd[λ(t), p] = 1), for infinitely many t ∈ N.
In particular, if the value d+ (resp., d−) associated with M(X ) is non null, then
for infinitely many t ∈ N both

�

u(t)(X )
�

pk 6= 0 and deg(
�

u(t)(X )
�

pk) 6= 0 (resp.,
�

l(t)(X )
�

pk 6= 0 and deg(
�

l(t)(X )
�

pk) 6= 0) hold. In other terms, if d+ > 0 (resp.,

d− < 0) then |{u(t)(X ), t ≥ 1}|=∞ (resp., |{lt(X ), t ≥ 1}|=∞).

Proof. We show the statements concerning υ(t), U(X ), u(t)(X ), and d+. Replace X by
1 in the matrix U(X ). Now, the coefficient υ(t) is just the element of position (n, n) in
the t-th power of the obtained matrix U(1). Over U(1), the thesis of Lemma 5 is still
valid replacing u(t)(X ) by υ(t). Thus, for every t ∈ N, υ(t) = un−1(1)υ(t − 1)+ · · ·+
u1(1)υ(t−n+1)+u0(1)υ(t−n)with initial conditions υ(0) = 1 and υ(l) = 0, for l <
0, where each ui(1) is the coefficient of the monomial ui(X ) inside U(X ). Thus, it fol-
lows that [υ(t)]pk = [un−1(1)υ(t − 1) + · · ·+u1(1)υ(t − n+ 1) +u0(1)υ(t − n)]pk .
By Lemma 3 we obtain that gcd[υ(t), p] = 1 (and so [υ(t)]pk 6= 0, too) for infinitely
many t ∈ N. In particular, if the value d+ associated with M(X ) is non null, then, by
the structure of GU and Lemma 4, both

�

u(t)(X )
�

pk 6= 0 and deg(
�

u(t)(X )
�

pk) 6= 0

hold for infinitely many t ∈ N, too. Therefore, |{u(t)(X ), t ≥ 1}| =∞. The same
proof runs for the statements involving λ(t), L(X ), u(t)(X ), and d− provided that
these replace υ(t), U(X ), u(t)(X ), and d+, respectively. ut

Lemma 7. Let M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

be a matrix in Frobenius normal form. If

either |{u(t)(X ), t ≥ 1}| =∞ or |{l(t)(X ), t ≥ 1}| =∞ then |{cM
t
(X )nn, t ≥ 1}| =∞.

Proof. Assume that |{u(t)(X ), t ≥ 1}| =∞. Since GU is a subgraph of G
cM (with

different labels), for each integer t from Lemma 6 applied to cM(X ), the cycles of
length t in G

cM with weight containing a monomial of degree td+ are exactly the
cycles of length t in GU . Therefore, it follows that |{cM

t
(X )nn, t ≥ 1}| =∞. The same

argument on GL and involving d− allows to prove the thesis if |{l(t)(X ), t ≥ 1}| =∞.

We are now able to present and prove the main result of this section. It shows a
decidable characterization of sensitivity for Frobenius LCA over Zn

pk .

Lemma 8. Let
�

(Zn
pk)Z, F

�

be any Frobenius LCA over Zn
pk and let (m0(X ), . . . ,mn−1)

be the n-th row of the matrix M(X ) ∈ Mat
�

n,Zpk

�

X , X−1
��

in Frobenius normal form
associated with F. Then, F is sensitive to the initial conditions if and only if mi(X ) is
sensitive for some i ∈ [0, n− 1].
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Proof. Let us prove the two implications separately.
Assume that all mi(X ) are not sensitive. Then, cM(X ) ∈ Mat

�

n,Zpk

�

, i.e., it does
not contain the formal variable X , and M(X ) =cM(X ) + pM ′(X ), for some M ′(X ) ∈
Mat

�

n,Zpk

�

X , X−1
��

in Frobenius normal form. Therefore, for any integer t > 0,
M t(X ) is the sum of terms, each of them consisting of a product in which p j appears
as factor, for some natural j depending on t and on the specific term which p j belongs
to. Since every element of M t(X ) is taken modulo pk, for any natural t > 0 it holds
that in each term of such a sum p j appears with j ∈ [0, k− 1] (we stress that j may
depend on t and on the specific term of the sum, but it is always bounded by k).
Therefore, |{M i(X ) : i > 0}|<∞ and so, by Proposition 2, F is not sensitive to the
initial conditions.

Conversely, suppose that mi(X ) is sensitive for some i ∈ [0, n− 1] and d+ > 0
(the case d− < 0 is identical). By Definition 7, for any natural t > 0 there exists a
matrix M ′(X ) ∈ Mat

�

n,Zpk

�

X , X−1
��

such that M t(X ) = cM
t
(X ) + pM ′(X ). By a

combination of Lemmata 6 and 7, we get |{cM
t
(X )nn, t ≥ 1}| =∞ and so, by Lemma 2,

|{M t(X )nn, t ≥ 1}| =∞ too. Therefore, it follows that |{M t(X ), t ≥ 1}| =∞ and, by
Proposition 2, we conclude that F is sensitive to the initial conditions. ut

5 Conclusions

In this paper we have studied equicontinuity and sensitivity to the initial conditions
for linear HOCA over Zm of memory size n, providing decidable characterizations
for these properties. We also proved that linear HOCA over Zm of memory size n
form a class that is indistinguishable from a subclass of LCA (namely, the subclass of
Frobenius LCA) over Zn

m. This enables to decide injectivity and surjectivity for linear
HOCA over Zm of memory size n by means of the decidable characterizations of
injectivity and surjectivity provided in [2] and [20] for LCA over Zn

m. A natural and
pretty interesting research direction consists of investigating other chaotic properties
for linear HOCA and all the mentioned dynamical properties, including sensitivity
and equicontinuity, for the whole class of LCA over Zn

m.
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