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Abstract

Functional graphs (FGs) model the graph structures used to analyse the behaviour of functions from a
discrete set to itself. In turn, such functions are used to study real complex phenomena evolving in time.
As the systems involved can be quite large, it is interesting to decompose and factorise them into several
subgraphs acting together. Polynomial equations over functional graphs provide a formal way to represent
this decomposition and factorisation mechanism, and solving them validates or invalidates hypotheses on
their decomposability. The current solution method breaks down a single equation into a series of basic
equations of the form A×X = B (with A, X, and B being FGs) to identify the possible solutions. However,
it is able to consider just FGs made of cycles only. This work proposes an algorithm for solving these basic
equations for general connected FGs. By exploiting a connection with the cancellation problem, we prove
that the upper bound to the number of solutions is closely related to the size of the cycle in the coefficient
A of the equation. The cancellation problem is also involved in the main algorithms provided by the paper.
We introduce a polynomial-time semi-decision algorithm able to provide constraints that a potential solution
will have to satisfy if it exists. Then, exploiting the ideas introduced in the first algorithm, we introduce a
second exponential-time algorithm capable of finding all solutions by integrating several ‘hacks’ that try to
keep the exponential as tight as possible.
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1. Introduction

Functional graphs (FGs) are directed graphs with outdegree 1. They are structurally equivalent to well-
known formal models called Discrete-time (discrete-space) Dynamical Systems (DDSs). If the set of nodes
is finite, then each node is ultimately periodic, i.e., a path originating in a state will eventually run into a
cycle. Hence, these graphs are characterised by a finite number of components (i.e., connected components
of the underlying undirected graph) with just one cycle each. Then, the nodes can be classified as cyclic if
they belong to a cycle, or transient otherwise.

From a mathematical point of view, FGs are a simple model, but they find important applications in the
description of the dynamics of many well-known discrete systems, namely, Boolean automata and networks,
genetic regulatory networks, cellular automata, and many others [18, 2, 1]. Over time, an important research
direction has been to investigate the expected number of components of a random mapping. This question
was opened by Metropolis and Ulam in 1953 [13] and answered by Kruskal one year later [11]. Since then,
several research directions have emerged to study, for example, the number of cycles, trajectories, and the
number and the size of the components of randomly generated FGs [16]. Considering FGs, the components
are a decomposition of the set of nodes in disjoint minimal non-empty invariant sets (i.e., f−1(V ) = V ).
Given this important aspect, Katz studied the probability that a random mapping is indecomposable (i.e.,
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the graph has just one component) [10], while Romero and Zertuche introduced explicit formulae for the
statistical distribution of the number of connected components of the system [15].

The cycles of the components of an FG represent the asymptotic behaviour of the system being modelled
and they are often called attractors for this reason. They can be particularly important when the dynamics
modelled by the graph arise from biological applications. As an example, attractors of Boolean networks
have been linked to biological phenotypes, making them a crucial factor in the analysis of these models [17].
The idea of trying to understand whether a deterministic discrete phenomenon is decomposable and/or
factorisable into smaller dynamics is a problem also studied in the world of DDSs [9, 14]. A newly developed
research direction tries to split an FG (i.e., DDS) into simpler ones by adopting a suitable algebraic approach.
Indeed, it has been proven that DDSs equipped with sum (i.e., disjoint union of components) and product
operations (i.e., direct product of graphs) form a commutative semiring [3, 19]. Thanks to this algebraic
setting, one can write polynomial equations in which coefficients and unknowns are FGs. Then, to simplify
a certain FG (or to model a hypothesis about the decomposability of a FG), one needs to solve a polynomial
equation having the FG as its constant right-hand side. If a solution exists, it can be combined with the
coefficients of the equation to obtain the original dynamics through a composition of smaller FGs.

According to the state of the art, to solve these equations, one needs to be able to solve a finite number of
basic linear equations of the form A×X = B, where A and B are known FGs and X is unknown [4]. To the
best of our knowledge, a technique has been introduced to solve these equations, and more general ones, only
over DDSs without transient states [4, 5]. For this reason, this work aims to study basic linear equations
over arbitrary connected FGs (namely A, X, and B) including transient states. The idea is to exploit
the connection with the classical cancellation problem on graphs, which aims at establishing under which
conditions the isomorphism of A ⋄X and A ⋄ Y implies that X and Y are isomorphic (for a graph product
⋄) [8]. The cancellation problem has been investigated for the Cartesian, the strong, and the direct products
over different classes of graphs (oriented and not oriented, and admitting self-loops or not) [12, 7, 8]. From
the literature, we know that cancellation holds, under certain conditions, for the Cartesian and the strong
products (over graphs and digraphs), but it can fail for the direct product. Moreover, it is known that this
problem is more challenging over digraphs than over graphs. Some questions are still open concerning the
cancellation problem for the direct product over digraphs. Some work has been done to characterise zero
divisors (digraphs for which the cancellation fails), or to find all digraphs Y such that A×X ∼= A×Y , with
A and X fixed and ∼= is equality up to isomorphisms [6]. However, the results obtained are concerned with
generic digraphs, while this paper focuses on connected digraphs with outgoing degree one to have further
interesting results. The interest of this research direction is also confirmed by the fact that, in parallel to
the present work, Naquin and Gadouleau [14] also studied the factorisation of FGs and their cancellation
properties. In particular, they investigated the cancellation over connected FGs, the uniqueness of the
factorisation over a specific class of FGs (namely the connected ones having a fixed point) as well as a way
to compute it, and they discuss the uniqueness of n-th roots.

In this paper, we show that cancellation holds over structures suitable for modelling FGs, namely infinite
in-trees (Theorem 3.9), with a novel use of a graph homomorphism counting technique. Thanks to this
approach, we introduce the first upper bound for the number of solutions of basic linear equations over
connected FGs (Theorem 3.12). The existence of such an upper bound is fundamental since it allows us to
conceive a polynomial-time algorithm (Sec. 3.3) which:

• either provides precise constraints on potential solutions,

• or discards impossible equations when it is not possible to determine such constraints.

The ideas and results of the first algorithm are improved and extended to obtain a second one, which is able
to provide all solutions (if any) of basic equations (Sec. 3.4) in exponential time. In order to flatten as much
as possible the exponential growth and to reduce the number of considered solutions at each step of the
algorithm, we explore some properties of the distance between nodes and their closest cyclic node (also called
depth), and how this metric behaves with respect to the direct product. Finally, the performances of the
second algorithm are evaluated through experiments. These experiments highlight the exploitability of the
algorithm and analyse the dependencies between the performances and different properties of the instances
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(such as cycle lengths, maximum indegree, and the number of nodes in the graphs). These algorithms are a
fundamental step towards a first approach to solving polynomial equations (with constant right-hand side)
over generic FGs.

2. Functional Digraphs

A digraph G = (V,E) is functional (an FG) if and only if each node v ∈ V has exactly one outgoing edge.
In other words, a FG is a graphical representation of a function f from V to itself (i.e., an endofunction)
such that E = {(u, v) ∈ V × V | v = f(u)}. From now on, when no confusion is possible, the symbol for
a generic FG G used interchangeably with the symbol f of function which it represents. A fundamental
property of FGs is that each connected component (or more precisely, weakly connected component) has
exactly one cycle. For any FG G, let ℓ be the number of its connected components.

A vertex v ∈ V is a cyclic node of G if there exists an integer p > 0 such that fp(v) = v. The smallest
such p is called the feedback (or period) of v. A cycle (of length p) of G is any set C = {v, f(v), . . . , fp−1(v)}
where v ∈ V is a cyclic node of feedback p.

Given a cycle C and a node v ̸∈ C, if h is the smallest natural number such that fh(v) ∈ C, we call the
set {v, f(v), . . . , fh−1(v)} a transient of length h and its points transient nodes. Then, h is called the
depth of v.

Thus, in FGs, any outgoing path of any node consists of at most two disjoint parts: a transient and a
cycle. Clearly, if we denote by PG the set of cyclic vertices and by TG the set of transient ones of G, we
have TG ∪ PG = V .

Each component Gj = (Vj , Ej) with j ∈ {1, . . . , ℓ} has one cycle Cj and Vj = Tj ∪ Cj . The transient
nodes Tj of a component j are the nodes v ∈ TG such that fh(v) ∈ Cj for some h > 0.
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Figure 1: A functional graph G with two cycles and some transients nodes connected to both cycles. We have G = (V, f) with
V = PG∪TG, PG = C1∪C2 = {v1, v2}∪{v8, v9, v10} and TG = T1∪T2 = {v3, v4, v5, v6, v7}∪{v11, v12, v13, v14, v15, v16, v17, v18}.
As an example of a transient, we can consider the green nodes. Node v18 is contained in transient {v18, v12} of length 2.

We consider two algebraic operations over FGs: the sum is the disjoint union of the components of two
graphs (denoted +), and the product is the direct product (denoted ×) of the graphs.

Definition 2.1 (Direct product of digraphs). Given two FGs, G = (V,E) and G′ = (V ′, E′), their product
G×G′ is a digraph where the set of nodes is V ×V ′ and the set of edges is {((v, v′), (u, u′)) | (v, u) ∈ E∧(v′, u′)
∈ E′}.

The graph obtained from the direct product corresponds to the representation of the function (f × f ′),
with f and f ′ the functions of G and G′, and defined as (f × f ′)(v, u) = (f(v), f ′(u)) for all (v, u) ∈ V ×V ′.

A known property of this operation is that two connected FGs with cycle lengths respectively |C| and
|C′| will generate a graph with gcd(|C|, |C′|) components with cycles of length lcm(|C|, |C′|) [4, 8]. Here, |S|
denotes the cardinality of the set S. We remark that the result of a direct product of connected FGs is
connected if and only if |C| and |C′| are coprime.
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Figure 2: An example of the product operation between connected FGs G and G′. For clarity, only the names of some nodes
are shown. According to the cycle lengths of the two graphs, the result of the product operation G×G′ consists of gcd(2, 4) = 2
components with cycles of length lcm(2, 4) = 4. Intuitively, we can see the two resulting cycles as the two possible “parallel”
executions of the cyclic dynamics ({(1, a), (2, b), (1, c), (2, d)} or {(2, a), (1, b), (2, c), (1, d)}). The set of vertices of the resulting
graph is the Cartesian product V × V ′. A generic node (v, v′) is cyclic in the result iff v is a cyclic node of G and v′ is a cyclic
node of G′, otherwise (v, v′) is transient. An alternative way of expressing the transients connected to a cyclic node (v, v′)
is by retracing the edges of the original graphs backwards (i.e., by considering all possible predecessors). For example, the
set of possible predecessors of the node (1, a) is the Cartesian product of predecessors of 1 and of a (i.e., {2, 3, 4} and {d, e},
respectively). In fact, we see that (1, a) has 6 incoming edges. Note that backtracking the edges in the transient nodes will
produce a transient of depth equal to the minimum of the original transients depths (see {(5, f), (3, e)} for example). However,
by backtracking only in cyclic nodes of one graph and only in transient nodes of the other graph, we obtain a copy of the
transient (consider {(2, g), (1, f), (2, e)} and {(5, c), (3, d)} for example).

It has been proved that the set of FGs (up to isomorphism) equipped with these two operations has the
structure of a commutative semiring D [3]. This naturally leads to polynomial equations over these graphs
which are useful to study decompositions and factorisations of FGs.

Let us point out that, in the following, we will always consider functional graphs up to isomorphism.
Consider the semiring D[X1, . . . , Xν ] of polynomials over D in the variablesX1, . . . , Xν , naturally induced

by D. Unfortunately, the problem of deciding if a solution exists is undecidable for multivariate equations [3].
However, when the right-hand side of the equation is constant (i.e., it contains no variables), the problem
turns out to be decidable, but no polynomial-time algorithm able to output the solutions is known.

Considering these computability results and the aim to study decompositions and factorisations, we
will be interested in the case of equations with a constant right-hand side and polynomial left-hand side
admitting monomials with just one variable. More formally, we will consider equations of the form

A1 ×Xw1
1 + · · ·+Am ×Xwm

m
∼= B. (1)

In such an equation, for each monomial z (with 1 ≤ z ≤ m), we denote the coefficient by Az and the
variable by Xz. Then, we use B to denote the constant term. Let us point out that coefficients, variables,
and the constant term are in D, but the powers wz ∈ N. Moreover, the Az (and Xz) denotes m potentially
different FGs and not m components of one graph. Note that since D does not provide a subtraction
operation, one cannot move terms between the two sides of the equation.

In [5], a pipeline to enumerate the solutions of Equation (1) considering just the cycles of coefficients,
unknowns and constant right-hand side has been introduced. Solutions found are just candidate solutions
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for the original equation, and on the other hand, solutions to the original equation must satisfy the restricted
equation.

3. Basic equations over FGs

Previous works show that to solve a generic equation over the cyclic part of FGs, it is possible to
enumerate the solutions of simpler equations of the form A ×X ∼= B (with A, X and B generic FGs) [4].
Consequently, the aim of this work is to propose an approach to study not only the possible cycles of an FG
X but also all its possible transients.

Since the product operation over FGs is distributive over connected components, we restrict our attention
to equations with A and X made by a single connected component.

Let B also be connected. We will refer to their sets of cyclic nodes as CA, CX and CB . Note that since
A, X and B are connected, we will have CA = PA and similarly for X and B. Our goal is then to find
all FGs X that, once multiplied by A, generate a graph having at least a component isomorphic to B. If
gcd(|CA|, |CX |) = 1, we have A × X ∼= B, and if gcd(|CA|, |CX |) > 1, we will write A × X ⊃ B (to be
understood as B is a subgraph of A×X) because B is just one of the connected components of the result
of the product operation. Then, in general, we write

A×X ⊇ B (2)

to consider both scenarios.

3.1. The t-abstraction

By introducing an abstraction (called the t-abstraction) over the FGs A, X, and B, we obtain new equa-
tions, which allow us to compute some information about the transient behaviour of the possible solutions
of X. More intuitively, these solutions give us strong constraints over the actual solutions of Equation (2),
which drastically reduce the number of possible graphs.

Let us now consider a generic FG G with ℓ components. First of all, let us fix an arbitrary indexing
function for cycles. Given a cycle Cj (for j ∈ {1, . . . , ℓ}), fix a node v ∈ Cj and define the index function

g : {0, . . . , |Cj | − 1} −→ Cj such that g(r) = fr(v). We now denote N
Gj

r,h the set of transient nodes of Vj

for which there exists a path of length h ending in g(r) and made only of transients nodes except for the
last one. From now on, we will refer to this set as the nodes at the layer (or level) h for the cyclic vertex
g(r). We remark that j, r and h respect specific ranges, namely j ∈ {1, . . . , ℓ}, r ∈ {0, . . . , |Cj | − 1}, and
h ∈

{
1, . . . , hmax

j

}
, where hmax

j is the maximum length of a transient in the j-th component. These sets can

be conveniently represented by a matrix NGj of sets in which an element at position (r, h) is given by

N
Gj

r,h =

{
f−1(g(r)) \ Cj if h = 1⋃

v∈N
Gj
r,h−1

f−1(v) if h > 1.

We remark that NGj is a matrix containing the transient nodes of a component Gj arranged by their height
and first cyclic node in the orbit. This matrix is our starting point to introduce t-abstractions.

For each component j, we now introduce a new matrix TGj , with |Cj | rows and hmax
j + 1 columns, to

model in a new way the transient part of the graph. Each element of this matrix is a multiset T
Gj

r,h , with

r ∈ {0, . . . , |Cj | − 1} and h ∈
{
1, . . . , hmax

j + 1
}
, containing the number of predecessors (i.e., the incoming

degree) of each node in N
Gj

r,h−1 (i.e., the number of predecessors of each node in the layer h − 1 for the
cyclic vertex g(r)). We call predecessors of a node v all those nodes for which there is an outgoing edge

towards v. Then, T
Gj

r,h is a multiset since there can be two nodes at the same level h− 1 for the same cyclic
vertex g(r) with an equivalent number of predecessors. We denote a multiset using square brackets. For
example, [2, 3, 3, 4] denotes the multiset containing symbols 2 and 4 with multiplicity 1, while the symbol 3
has multiplicity 2.
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TG =




1 2 3 4
0 [2] [1] [0] ∅
1 [3] [2, 2] [1, 1, 1, 0] [0, 0, 0]
2 [3] [1, 1] [3, 1] [0, 0, 0, 0]
3 [5] [0, 0, 1, 1] [0, 0] ∅




NG =




1 2 3
0 {v5} {v14} ∅
1 {v6, v7} {v15, v16, v17, v18} {v23, v24, v25}
2 {v8, v9} {v19, v20} {v26, v27, v28, v29}
3 {v10, v11, v12, v13} {v21, v22} ∅
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Figure 3: We consider the connected FG G with a cycle of length 4 on the right. A possible index function is g(y) = vy+1.
According to G and g(y), the corresponding t-abstraction TG and the matrix NG of G are shown on the left. In both cases, r
runs through rows and h through columns. Note that |TG

r,h| is always equal to |NG
r,h−1| since each element of TG

r,h represents

the number of predecessors of a node in NG
r,h−1.

Let us point out that, for h = 1, we analyse the number of predecessors of the cyclic node g(r). Then,
we include its predecessor in the cycle Cj . More formally, for a component j, we have

T
Gj

r,h =

{
[|f−1(g(r))|] if h = 1

[|f−1(v)| : v ∈ N
Gj

r,h−1] if h > 1.

Finally, the t-abstraction of a functional graph G = G1 + · · ·+Gℓ (with G1, . . . , Gℓ connected compo-
nents) is the multiset Ǧ = [TG1 , . . . , TGℓ ]. In other words, the t-abstraction of a generic FG is the multiset
containing the t-abstraction of each of its components. It is imperative to consider multisets, since an FG
may contain components that are isomorphic to each other (i.e., with the same t-abstraction).

Figure 3 illustrates an example to clarify all the notations just introduced.
At this point, it must be emphasised that two non-isomorphic connected components may have the same

t-abstraction, as illustrated in Figure 4 for example.

1 2 3 4( )
0 [3] [2, 1] [0, 0, 1] [0]
1 [4] [0, 0, 2] [0, 0] ∅

• •
•

•
•

•

• •

•
•
•

•

•
• •

•

•
•

•

•

•
•
•
•

•

•

Figure 4: Two nonisomorphic graphs (top) having the same t-abstractions (bottom).

3.1.1. Products of t-abstractions

To solve instances of Equation (2), we consider the corresponding equation over t-abstractions TA×TX

⊇ TB , where TA, TX and TB are the t-abstractions of respectively A, X and B since they are connected.
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Here, we study how the product of the t-abstractions of two connected FGs can be computed to obtain the
t-abstraction of the product between the original FGs. We consider connected FGs because, in the case of
a product operation between two generic functional graphs Ǧ = [TG1 , . . . , TGℓG ] and Ȟ = [TH1 , . . . , THℓH ],

the result can in fact be computed as
∑ℓG

z=1

∑ℓH
z′=1 T

Gz × THz′ . We denote the number of components of G
and H by ℓG and ℓH respectively.

For two multisets of natural numbers M = [d1, . . . , dn] and M ′ = [d′1, . . . , d
′
m], we denote their disjoint

union as M +M ′ and we define the product M ⊗M ′ = [dḋ′ | d ∈M,d′ ∈M ′].

Proposition 3.1. Consider two connected FGs G andH with their respective t-abstractions Ǧ = [TG] (with
|CG| rows and hmax

G columns) and Ȟ = [TH ] (with |CH | rows and hmax
H columns). Then, the t-abstraction Ǩ

of the product K = G×H is a multiset of matrices [TK1 , . . . , TKℓK ] with ℓK = gcd(|CG|, |CH |). Each matrix
TKi (with i ∈ {1, . . . , ℓK}) has lcm(|CG|, |CH |) rows and max {hmax

G , hmax
H } columns, and each element is

computed from Ǧ and Ȟ as

TKi

r,h = TG
r,h ⊗




h−1∑

j=0

TH
r−j+(i−1),h−j


+ TH

r+(i−1),h ⊗




h−1∑

j=1

TG
r−j,h−j


 (3)

where the row indices r and r − j (respectively r − j + (i− 1) and r + (i− 1)) are interpreted modulo |CG|
(respectively |CH |).
Proof. In [4] it has been proven that the product operation between two connected FGs gives gcd(|CG|, |CH |)
components with cycle length lcm(|CG|, |CH |). At this point, we need to prove that the maximum transient
length of the resulting components is max {hmax

G , hmax
H }.

Let us consider G = (VG, EG) and H = (VH , EH) with just one component each and with corresponding

functions fG and fH . According to Section 2, we know that f
hmax
G

G (v) ∈ PG, for all v ∈ VG, otherwise, with
a smaller number of applications of fG, the resulting node can be a transient node. Let us now suppose
hmax
G ≥ hmax

H . In this scenario, for all h ≥ hmax
H , we have fh

H(u) ∈ PH for all u ∈ VH . Then, a node (v1, v2)
in the result of the product operation (with v1 ∈ NG

r1,hmax
G

for some r1 ∈ {0, . . . , |CG| − 1}) is a transient

node that requires hmax
G applications of fK = fG × fH to reach a cyclic node. Moreover, for all v2 ∈ VH , we

have (fG×fH)h
max
G (v1, v2) ∈ PK and (fG×fH)h(v1, v2) ̸∈ PK with h < hmax

G . For this reason, hmax
K = hmax

G .
We remark that, since the statement is true for all v2, all components NKi will have maximal transient
length hmax

G . Symmetrically, if we consider hmax
G ≤ hmax

H , one obtains all NKi having hmax
H columns, for all

1 ≤ i ≤ gcd(|CG|, |CH |).
Let gG, gH and gK be the index functions of the three graphs. By considering a node (v1, v2) ∈ VG×VH ,

if (v1, v2) ∈ NKi

r,h and (fG × fH)h(v1, v2) = (p1, p2), we know that gK(r) = (p1, p2) and at least one of the
following conditions holds:

(i) v1 ∈ NG
r1,h

with gG(r1) = p1;

(ii) v2 ∈ NH
r2,h

with gH(r2) = p2.

First, let us consider v1 ∈ NG
r1,h

with gG(r1) = p1. Then, if we are interested in the elements of TKi

r,h

including v1, we need to consider all feasible values of v2. In order for (v1, v2) to belong to NKi

r,h , node v2
must satisfy fh

H(v2) = p2. Therefore, v2 must necessarily belong to one of NH
r2,h

, NH
r2−1,h−1, N

H
r2−2,h−2, . . .,

NH
r2−(h−1),1 or be the cyclic vertex gH(r2 − h). The reasoning is similar for the case when v2 ∈ NH

r2,h
. Since

either v1 ∈ NG
r1,h

, or v2 ∈ NH
r2,h

, or both, the predecessors (in terms of multiplicity) can be computed, for
the component i containing (p1, p2), by

TKi

r,h = TG
r,h ⊗




h−1∑

j=1

TH
r−j,h−j


+ TH

r,h ⊗




h−1∑

j=1

TG
r−j,h−j


+ TG

r,h ⊗ TH
r,h.

Let us suppose, once again, that v1 ∈ NG
r1,h

. In order to generate all components, we must consider the

fact that there might exist a node v′2 such that (fG× fH)h(v1, v
′
2) = (p1, fH(p2)) with (fG× fH)h

′
(p1, p2) ̸=
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(p1, fH(p2)) for all h′ ∈ N; this means that (v1, v2) and (v1, v
′
2) belong to different components of K. In

order for (v1, v
′
2) to belong to NKi

r,h , the node v′2 must satisfy fh
H(v′2) = fH(p2) with gH(r2) = p2. Then,

v′2 must necessarily belong to one of NH
(r2+1),h, N

H
(r2+1)−1,h−1, N

H
(r2+1)−2,h−2, . . ., N

H
(r2+1)−(h−1),1 or be the

cyclic node gH((r2 + 1)− h).
In general, we can consider a node u such that (fG × fH)h(v1, u) = (p1, f

i
H(p2)) with 1 ≤ i ≤

gcd(|CG|, |CH |) and (fG × fH)h
′
(p1, p2) ̸= (p1, f

i
H(p2)) for all h′ ∈ N. If (v1, u) ∈ TKi

r,h , u must be a

node such that fh
H(u) = f i

H(p2) with gH(r2) = p2. Then, u must necessarily belong to one of NH
r2+(i−1),h,

NH
r2+(i−1)−1,h−1, N

H
r2+(i−1)−2,h−2, . . . , N

H
r2+(i−1)−(h−1),1 or be the cyclic node gH(r2 + (i − 1) − h). As

a consequence, we can compute each element of the t-abstraction of an arbitrary component i, with
1 ≤ i ≤ gcd(|CG|, |CH |), as

TKi

r,h = TG
r,h ⊗




h−1∑

j=1

TH
r−j+(i−1),h−j


+ TH

r+(i−1),h ⊗




h−1∑

j=1

TG
r−j,h−j


+ TG

r,h ⊗ TH
r+(i−1),h.

Since gH(r− j+(i−1)) and gH(r+(i−1)) represent cyclic nodes of H, and thus exhibit a cyclic behaviour,
they must be interpreted modulo |CH |, and similarly gG(r) and gG(r − j) modulo |CG|.

3.2. The cancellation problem over transients

In this section, we aim to introduce a first upper bound to the number of solutions of a basic inequality
A × X ⊇ B over connected FGs. We will represent such digraphs with infinite anti-arborescences (or in-
trees). An in-tree is a directed rooted tree where the edges are directed towards the root. We call this
in-tree the unroll of an FG.

Definition 3.2 (Unroll of a FG). Given a connected FG G = (V,E) representing the function f and a
cyclic node v of G, the unroll of G from v is an infinite in-tree Uv(G) = (V, E) with vertices V =

⋃
i∈N Vi,

where V0 = {(v, 0)} and Vi+1 = {(u, i + 1) | u ∈ f−1(v) for some (v, i) ∈ Vi}, and edges between vertices
(u, i+ 1) and (f(u), i) on two consecutive levels i+ 1 and i (with i ∈ N).

We remark that, starting from a generic connected FG (with just one cycle of length p), we can introduce
p different unrolls, one for each node v ∈ P.

Let us point out that a similar (but not equivalent) definition of unroll has been independently introduced
in [14].

Let us introduce a product of (finite or infinite) in-trees to be applied over unrolls to obtain the in-tree
modelling the result of a direct product over FGs. Intuitively, this product is the direct product applied
layer by layer.

Definition 3.3 (Product of in-trees). Consider two infinite or finite in-trees I1 = (V1, E1) and I2 = (V2, E2)
with roots r1 and r2, respectively. The product of in-trees I1⋆I2 is the in-tree (V, E) such that (r1, r2) ∈ V
and, for all (v, u) ∈ V, if there exist v′ ∈ V1 and u′ ∈ V2 such that (v′, v) ∈ E1 and (u′, u) ∈ E2, then
(v′, u′) ∈ V. The set of edges is defined as E = {((v′, u′) , (v, u)) | (v′, v) ∈ E1 ∧ (u′, u) ∈ E2}. Notice that
I1 ⋆ I2 is an infinite in-tree iff I1 and I2 are infinite in-trees.

We remark that unrolls of FGs always have one and only one infinite path starting from the root.
Considering an instance of Equation (2), we can now introduce a corresponding equation over unrolls,

and study whether there can be more than one solution. For the moment, let us consider generic cyclic
nodes of A, X, and B (let a, x, and b be respectively these three nodes). Suppose that there exists X such
that Ua(A)⋆Ux(X) ∼= Ub(B), and Y (not isomorphic to X) such that Ua(A)⋆Uy(Y ) ∼= Ub(B) (with y also a
generic cyclic node of Y ). If Ux(X) ̸∼= Uy(Y ), then there is a difference at some minimal level between the two
infinite in-trees. Given a generic infinite in-tree I (such as an unroll), we define the function cut which gives
the finite subtree up to the layer t (with t ∈ N). Then, the result of cutt(I) is a finite sub-in-tree induced by
the set of vertices having at most distance t from the root. We will denote the cut of an unroll Ua(A), at a

8



•

•

•

•
••

•
•
••

•

•• •

•

•

•

•
•

•
•

•
•

•

•

•




1 2 3 4
0 [1] ∅ ∅ ∅
1 [3] [1, 0] [1] [0]
2 [3] [2, 1] [1, 0, 0] [0]
3 [4] [0, 0, 0] ∅ ∅


 ×




1 2 3
0 [2] [0] ∅
1 [2] [2] [0, 0]
2 [3] [0, 0] ∅


 =




1 2 3 4
0 [2] [0] ∅ ∅
1 [6] [2, 0, 2, 2, 0] [0, 0, 0, 0, 0, 3] [0, 0, 0]
2 [9] [0, 0, 0, 0, 0, 0, 4, 2] [2, 0, 0, 2, 0, 0] [0, 0, 0, 0]
3 [8] [0, 0, 0, 0, 0, 0, 0] ∅ ∅
4 [2] [8] [0, 0, 0, 0, 0, 0, 0, 0] ∅
5 [9] [0, 0, 0, 0, 0, 0, 2, 0] [2, 2] [0, 0, 0, 0]
6 [6] [0, 0, 0, 6, 3] [0, 0, 0, 0, 0, 0, 2, 0, 0] [0, 0]
7 [8] [0, 0, 0, 0, 0, 0, 6] [0, 0, 0, 0, 0, 0] ∅
8 [3] [0, 0] ∅ ∅
9 [6] [0, 0, 3, 0, 0] [0, 0, 2] [0, 0]

10 [6] [4, 2, 4, 2, 6] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0] [0, 0, 0]
11 [12] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ∅ ∅




Figure 5: An example of product operation between the t-abstractions TG and TH . Above there are the two t-abstractions
and the corresponding connected FGs. Below there is the resulting t-abstraction TK computed according to Proposition 3.1.
Let us suppose that we have already computed all TK

r,h with r ∈ {0, . . . , 11} and h = 1, and also all TK
r,h with r ∈ {0, . . . , 9} and

h = 2. Then, we need to compute TK
10,2 (in yellow). According to the proposition, TK

10,2 = TG
2,2 ⊗ (TH

1,2 + TH
0,1) + TH

1,2 ⊗ TG
1,1 =

[2, 1] ⊗ ([2, 2]) + [2] ⊗ [3] = [4, 2, 4, 2, 6]. Intuitively, we should follow the diagonal of elements in the two original matrices
until we reach the first column (as shown in yellow). Note that if we need to calculate an element TK

r,h such that one of

the two matrices does not have a column h, we still consider the elements on the diagonal (with h′ < h). An example is
TK
1,4 = TG

1,4 ⊗ (TH
0,3 + TH

2,2 + TH
1,1) (in green in the matrices).

v1v2 v3

v4

v5
v6

v7

• • •
•

•

•

•

(v1, 0)

(v2, 1) (v3, 1)

(v1, 2) (v4, 2) (v5, 2)

(v2, 3) (v3, 3) (v6, 3) (v7, 3)

Figure 6: The unroll Uv1 (G) (right) of the connected FG G (left). The root (v1, 0) of the infinite in-tree is in the bottom layer
of the structure. Intuitively, the unroll shows all the paths which eventually reach the root.
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⋆ =

(v0, 0)

(v2, 1)(v1, 1) (v3, 1)

(v0, 2) (v5, 2)(v4, 2)

(v1, 3) (v2, 3) (v3, 3)

(v0, 4) (v4, 4) (v5, 4)

(v1, 5) (v2, 5) (v3, 5)

(v0, 6) (v4, 6) (v5, 6)

(u0, 0)

(u1, 1)

(u2, 2) (u3, 2) (u4, 2)

(u0, 3) (u5, 3) (u6, 3)

(u1, 4)

(u2, 5) (u3, 5) (u4, 5)

(u0, 6) (u5, 6) (u6, 6)

(v0, u0)

(v1, u1)(v2, u1) (v3, u1)

(v0, u2)(v0, u3) (v0, u4)(v4, u2)(v4, u3)(v4, u4) (v5, u2)(v5, u3)(v5, u4)

(v1, u0)(v1, u5)(v1, u6)(v2, u0)(v2, u5) (v2, u6)(v3, u0)(v3, u5)(v3, u6)

(v0, u1)(v4, u1) (v5, u1)

(v1, u2)(v1, u3)(v1, u4) (v2, u2)(v2, u3)(v2, u4)(v3, u2)(v3, u3)(v3, u4)

(v0, u0)(v0, u5)(v0, u6)(v4, u0)(v4, u5)(v4, u6)(v5, u0)(v5, u5)(v5, u6)

Figure 7: An example of product ⋆ (see Definition 3.3) over infinite in-trees (in this case two unrolls Uv0 (G1) and Uu0 (G2)).
The product is intuitively equivalent to the direct product applied level by level. The roots of the unrolls and their infinite
paths are highlighted in red.

level t, by Ca,t(A). Remark that the cut distributes over the ⋆ product. In our problem, if Ux(X) ̸∼= Uy(Y ),
then there exists a minimum t ∈ N\{0} such that Cx,t(X) ̸∼= Cy,t(Y ) and Cx,t−1(X) ∼= Cy,t−1(Y ).

Given two graphs G1 and G2, denote by Hom(G1, G2) the set of homomorphisms between G1 and G2

and let hom(G1, G2) be the cardinality of Hom(G1, G2). An important result from graph theory relates the
isomorphism of two graphs to their number of incoming homomorphisms.

Theorem 3.4 (Lóvasz [12]). Two graphsG1 andG2 are isomorphic iff, for all graphsG, we have hom(G,G1) =
hom(G,G2).

Then, in our case, if Ca,t(A) ⋆ Cx,t(X) ∼= Cb,t(B) and Ca,t(A) ⋆ Cy,t(Y ) ∼= Cb,t(B), we must have

hom(G,Ca,t(A) ⋆ Cx,t(X)) = hom(G,Ca,t(A) ⋆ Cy,t(Y )) = hom(G,Cb,t(B))

for all G. Then, it is necessary to understand how hom(G,Ca,t(A)⋆Cx,t(X)) and hom(G,Ca,t(A)⋆Cy,t(Y ))
can be computed in terms of hom(G,Ca,t(A)), hom(G,Cx,t(X)), and hom(G,Cy,t(Y )).

As a convention, we will use F to denote finite in-trees (such as infinite in-trees after a cut operation).

Theorem 3.5. For any graph G and for any pair of finite in-trees F1, F2 we have

hom(G,F1 ⋆ F2) = hom(G,F1) · hom(G,F2).

To prove this theorem, we need the following lemma.

Lemma 3.6. For any graph G and for any pair of finite in-trees F1, F2, if τ ∈ Hom(G,F1 ⋆ F2) with
τ(u) = (u1, u2) then π1 ◦ τ ∈ Hom(G,F1) and π2 ◦ τ ∈ Hom(G,F2), where π1 and π2 are the left and right
projections, respectively.

Proof. Take τ ∈ Hom(G,F1⋆F2). If (u, v) is an edge of G, then (τ(u), τ(v)) must be an edge of F1⋆F2. Let us
suppose that τ(u) = (u1, u2) and τ(v) = (v1, v2). From the product definition, the fact that ((u1, u2), (v1, v2))
is an edge of F1 ⋆ F2 implies that (u1, v1) is an edge of F1 and (u2, v2) is an edge of F2. By applying the
projection π1, we obtain (π1 ◦ τ)(u) = u1 and (π1 ◦ τ)(v) = v1. Then, π1 ◦ τ ∈ Hom(G,F1), and by same
reasoning, we obtain π2 ◦ τ ∈ Hom(G,F2).

Proof of Theorem 3.5. Let φ : Hom(G,F1 ⋆ F2) → Hom(G,F1) × Hom(G,F2) be the function defined by
φ(τ) = (π1 ◦ τ, π2 ◦ τ); by Lemma 3.6 this is indeed a well-defined function. The goal is to prove that φ is a
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bijection. First, let us prove the surjectivity of φ. Let (τ1, τ2) ∈ Hom(G,F1)×Hom(G,F2); we need to find
τ ∈ Hom(G,F1 ⋆ F2) such that φ(τ) = (τ1, τ2). For τ(v) = (τ1(v), τ2(v)),

φ(τ)(v) = (π1(τ(v)), π2(τ(v))) = (π1(τ1(v), τ2(v)), π2(τ1(v), τ2(v))) = (τ1(v), τ2(v))

implies φ(τ) = (τ1, τ2). Let us now prove that φ is also injective, i.e., φ(τ) = φ(τ ′) implies τ = τ ′. We
have φ(τ)(v) = (π1(τ(v)), π2(τ(v))) and φ(τ ′)(v) = (π1(τ

′(v)), π2(τ
′(v))). If φ(τ) = φ(τ ′) then π1(τ(v)) =

π1(τ
′(v)) and π2(τ(v)) = π2(τ

′(v)), which implies τ = τ ′.

As an immediate consequence of Theorem 3.5 we have

hom(G,Ca,t(A) ⋆ Cx,t(X)) = hom(G,Ca,t(A)) · hom(G,Cx,t(X)),

hom(G,Ca,t(A) ⋆ Cy,t(Y )) = hom(G,Ca,t(A)) · hom(G,Cy,t(Y )).

The following lemma relates the existence of homomorphisms towards trees to the existence of homo-
morphisms towards paths.

Lemma 3.7. If G is a graph and F is a finite in-tree, then hom(G,F ) ̸= 0 iff hom(G,Ps) ̸= 0, where Ps is
any directed path with s edges and s is the height of F .

Proof. There always exists a homomorphism from an in-tree F to Ps with s being the height of F : one can
map all the nodes of the i-th level of the tree to the i-th node of the path. Conversely, a homomorphism from
Ps to F exists by choosing any path of length s in F . By composition of homomorphisms, hom(G,F ) ̸= 0
iff hom(G,Ps) ̸= 0.

We are studying when hom(G,Ca,t(A)) · hom(G,Cx,t(X)) = hom(G,Ca,t(A)) · hom(G,
Cy,t(Y )) = hom(G,Cb,t(B)) implies Cx,t(X) ∼= Cy,t(Y ). This is a special case of the well-known cancellation
problem [8]. In this problem, one needs to decide if A ⋄ X ∼= A ⋄ Y ∼= B implies X ∼= Y , according to a
specific definition of the product operation ⋄. In our case, we aim at studying cancellation over FGs through
the ⋆ product over unrolls. At this point of the reasoning, we can reduce our problem to a corresponding
one over finite in-trees.

Theorem 3.8. For any finite in-trees F , X, and Y of the same height, F ⋆ X ∼= F ⋆ Y implies X ∼= Y .

Proof. According to Theorem 3.5, since F ⋆ X ∼= F ⋆ Y , we have hom(G,F ) · hom(G,X) = hom(G,F ) ·
hom(G, Y ) for all graphs G. If hom(G,F ) ̸= 0, we can divide by it to obtain hom(G,X) = hom(G, Y ). If
hom(G,F ) = 0, according to Lemma 3.7, we have hom(G,Ps) = 0 where s is the height of F . Since F , X,
and Y have the same height, also hom(G,X) = 0 and hom(G, Y ) = 0.

Theorem 3.8 over finite in-trees can now be generalized to infinite in-trees, including unrolls.

Theorem 3.9. I ⋆ X ∼= I ⋆ Y implies X ∼= Y , for all infinite in-trees X,Y , and I.

Proof. If X ̸∼= Y , then there exists a minimum t ∈ N \ {0} such that cutt(X) ̸∼= cutt(Y ) and cutt−1(X) ∼=
cutt−1(Y ). Now, since I ⋆ X ∼= I ⋆ Y , we have cutt(I ⋆ X) ∼= cutt(I ⋆ Y ). By the distributivity of the cut
operation over products, we have cutt(I) ⋆ cutt(X) ∼= cutt(I) ⋆ cutt(Y ). According to Theorem 3.8, this
means that cutt(X) ∼= cutt(Y ), which is a contradiction.

Up to now, we have proved that, considering two equations over unrolls, Ua(A)⋆Ux(X) ∼= Ua(A)⋆Uy(Y ) ∼=
Ub(B) implies Ux(X) ∼= Uy(Y ). This means that given a basic equation of unrolls and given a and b nodes,
the solution, if any, is unique. Now, we want to show how many equations over unrolls we need to study
to enumerate the solutions of A ×X ⊇ B. Note that, in the case of A ×X with gcd(|PA|, |PX |) ̸= 1, the
result of the product of the unrolls of A and X will be the unroll of only one component of A×X, which is
in accordance with Equation (2).

Let us fix b and study, for every a ∈ PA, the corresponding equation over unrolls. This gives us |PA|
equations to study. If we fix a, we have |PB | equations to consider. Hence, fixing b is more efficient, since
|PA| < |PB |. The question is now to determine if it is necessary to try another b′. To answer this, we
introduce the notion of roll, which is intuitively the opposite of an unroll.
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(u0, 0)

(u1, 1)

(u2, 2) (u3, 2) (u4, 2)

(u0, 3) (u5, 3) (u6, 3)

(u1, 4)

(u2, 5) (u3, 5) (u4, 5)

(u0, 6) (u5, 6) (u6, 6)

Figure 8: According to Definition 3.10, given an infinite in-tree (or an unroll as in this case) and an integer ρ (here equal to
2), we can define the roll as the connected component with a cycle of length ρ+ 1 obtained by deleting the edge from (u0, 3)
to (u2, 2) and adding another one from (u0, 0) to (u2, 2), in this case.

Definition 3.10 (Roll of an infinite in-tree). Let I = (V, E) be an infinite in-tree with root r and only
one infinite path (. . . , vn, vn−1, . . . , v2, v1 = r), and let ρ ≥ 1 be an integer. Let J = (V, E ′) with E ′ =
(E \ {(vρ+1, vρ)})∪{(r, vρ)}. Then J = I ′ + J ′ where I ′ is an infinite in-tree and J ′ is a finite connected FG
with a cycle of length ρ. We call J ′ the roll (of length ρ) of I, denoted Rρ(I).

Notice that, for all a ∈ PA, we have R|PA|(Ua(A)) ∼= A. That is, rolling up the unroll of A from any of
its periodic nodes always yields the initial FG A if the length |PA| is used.

Lemma 3.11. Let A×X ⊇ B with lcm(|PA|, |PX |) = |PB |. Suppose that:

• Ua(A) ⋆ Ux(X) ∼= Ub(B) for some a ∈ PA, x ∈ PX , and b ∈ PB ;

• Ua′(A) ⋆ Uy(Y ) ∼= Ub′(B) for some connected FG Y with y ∈ PY and |PY | = |PX |;

• a′ = fk
A(a) and b′ = fk

B(b) for some k ∈ N, where fk
A and fk

B are the functions represented by FGs A
and B.

Then, X ∼= Y .

Proof. Let k′ be an integer such that fk′

B (b′) = fk′

B (fk
B(b)) = b. Since |PB | is a multiple of |PA|, this also

implies fk′

A (a′) = fk′

A (fk
A(a)) = a. This means that Ub(B) is the unroll of the same FG as in Ub′(B) but

taking the k′-th successor of b (i.e., fk′

B (b)) as the root, and similarly for Ua(A) and Ua′(A). According to

the same reasoning, Uy′(Y ) with y′ = fk′

Y (y) satisfies Ua(A) ⋆ Uy′(Y ) ∼= Ub(B). By Theorem 3.9, we have
Uy′(Y ) ∼= Ux(X), and so R|PY |(Uy′(Y )) ∼= R|PX |(Ux(X)) implies Y ∼= X.

Now, if we try to fix b′ = fk
B(b) and we consider k′ such as fk′

B (b′) = fk′

B (fk
B(b)) = b, every pairing of

b′ with an a ∈ PA will lead, by Lemma 3.11, to the same solution as fixing fk′

B (b′) = b and fk′

A (a), which
has already been done since we already considered every a ∈ PA with b. Thus, fixing one b is sufficient to
checking all solutions.

Theorem 3.12. For any pair of connected FGs A,B and for any integer pX ≥ 1 the inequality A×X ⊇ B
admits at most |PA| connected solutions X having |PX | = pX .

Corollary 3.13. For any pair of connected FGs A and B the inequality A×X ⊇ B admits at |PA| connected
solutions X with |PX | = px for each px ≥ 1 such that lcm(|PA|, px) = |PB |.
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•
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Figure 9: The result of the roll operation on the three unrolls in Figure 7 (with ρ equal to 2, 3, and 6 respectively). It can thus
be seen that the product ⋆ of the unrolls is equivalent to the product of the FGs.

An example of inequality where the number of solutions approaches the upper bound of Theorem 3.12
(in the case of gcd(|PA|, |PX |) > 1) is shown in Figure 10. Note that this example can be generalised to
create instances of the inequation A×X ⊇ B with an arbitrarily large number of solutions for X.

A few experiments led us to actually conjecture that a stronger statement than Theorem 3.12 holds when
gcd(|PA|, |PX |) = 1.

Conjecture 3.14. For any pair of connected FGs A and B, the equation A×X ∼= B admits at most one
solution.

During the review process of a previous version of this work, this conjecture was actually proved, using
different techniques, by Naquin and Gadouleau [14]. However, we plan to try to prove this statement using
the same homomorphism counting techniques as Theorem 3.12, as this would give us new insight on the
problem and possibly on related ones.

3.3. A polynomial algorithm for basic equations over t-abstractions

In this section, we introduce a polynomial-time algorithm (Algorithm 1) to find all TX (if they exist)
such that TA × TX ⊇ TB . Recall that according to Proposition 3.1, the product of TA and TX generates
a multiset, in which we want TB to be one of the elements. The algorithm takes the t-abstraction of
two connected FGs A and B and a value pX (an admissible length of the cycle of X) to reconstruct
inductively the possible t-abstractions of X. Remark that pX can be any positive natural number such that
lcm(|PA|, pX) = |PB |.

By Theorem 3.12, we have at most |PA| solutions (the upper bound to the number of solutions for FGs
also applies for t-abstractions). Then, we can take the matrix TB as it is and try to reconstruct TX for each
cyclic permutation of the lines of TA.

The algorithm goes through every element TB , column by column, to compute TX column by column.

According to Proposition 3.1, we know that: TB
r,h = TX

r,h ⊗M1 +M2, where M1 =
∑h−1

j=0 TA
r−j+i−1,h−j and

M2 = TA
r+i−1,h⊗ (

∑h−1
j=1 TX

r−j,h−j). For each TB
r,h, the M2 is known since all TX

r′,h′ (for all h′ ∈ {1, . . . , h− 1}
and r′ ∈ {0, . . . , pX − 1}) have already been computed in previous steps of the algorithm. Note that, due to
how the matrix is defined, it is always possible to know the expected cardinality of a TX

r,h. In fact, for h > 2,

the sum of the values within TX
r,h−1 tells us the number of nodes (thus the number of elements) in multiset TX

r,h

(see Figure 3). This information is exploited in the algorithm thanks to the variable expectedCardinalities
(see Section 3.3).
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Figure 10: An example of an inequation with multiple solutions. The FG A, multiplied with one of the Xi, generates 4
components, one of which will be isomorphic to B. For one Xi, the cyclic alignment resulting in B will be the one overlaying
the cyclic node with a transient in A with the cyclic node without nodes in Xi (i.e., the red nodes). Note that this example
can be generalised to create instances of the inequation A×X ⊇ B with an arbitrarily large number of solutions for X.

At this point, the goal is to compute TX
r,h such that TB

r,h −M2 = TX
r,h ⊗M1. Finding such a TX

r,h can be

done as follows. Let M3 be the multiset TB
r,h −M2, and d, d′ be the maximum elements of respectively M1

and M3. Then, if TB does indeed satisfy the product TA × TX , there must exist a y ∈ TX
r,h which satisfies

d · y = d′, so we know that d
d′ is an element of TX

r,h. We can save it and update M3 to be M3 − [ dd′ ] ⊗M1.
We continue until either M3 is empty or it contains only zeros. In this case, all the missing y must be zeros

too. In this last case, |M3|
|M1| zeros must be added to TX

r,h. This procedure computes all elements of TX
r,h in a

non-ambiguous manner. We will call msDivision the process of finding TX
r,h such that M3 = TX

r,h ⊗M1.

Let us point out some important aspects. As for integer division, we need to consider the case where
the denominator is zero (i.e., M1 filled with only zeros). For such a case, one is led to think that it is
impossible to define with certainty our TX

r,h since every multiset with the suitable cardinality would satisfy
the equation. Fortunately, this particular scenario cannot happen in our case because M1, as defined above,
contains the multiset TA

r−h+1,1 which necessarily contains a positive integer.

It may happen, when we go through the TB
r,h with r > pX − 1, that the corresponding TX

r,h has already

been computed. This is normal, since the rows of TX are considered modulo pX . In this case, we only check
if the product holds (an example of this mechanism is shown below).

To conclude, if a contradiction occurs at any point of the algorithm, the reconstruction of the current
solution is stopped, and the algorithm tries out another cyclic permutation of the lines of TA (i.e., another
i). Such contradictions occur, for instance, when we compute a difference between two multisets and the
second one is not included in the first one, when the computed value d

d′ is not an integer, or when the
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cardinality of the multiset returned by msDivision does not match the expected one.

An implementation of the approach just outlined is presented in Algorithm 1.

3.3.1. A worked-out example

In this example we go over the details of Algorithm 1 and we will explain how to reconstruct the TX up
to its second column (i.e., the two red ones) with the data provided below.

TA = TX =

TB =

1 2 3( )
0 [2] [0] ∅
1 [5] [0, 0, 0, 1] [0]

1 2 3 4 5 6( )0 [2] [2] [0, 1] [2] [0, 1] [0]
1 [4] [0, 0, 0] ∅ ∅ ∅ ∅
2 [3] [0, 1] [0] ∅ ∅ ∅

1 2 3 4 5 6





0 [4] [0, 0, 10] [2] [1] [0, 0, 0, 0, 0, 0, 0, 0] [0, 0]
1 [20] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2] [0, 0] ∅ ∅ ∅
2 [6] [0, 0, 0, 0, 5] [0, 0, 0, 0, 0] ∅ ∅ ∅
3 [10] [0, 0, 0, 0, 0, 0, 2, 3, 4] [0, 0, 0, 0, 0, 0, 0, 0, 5] [0, 0, 0, 2, 4] [0, 0, 0, 0, 0, 5] [0, 0, 0, 0, 0]
4 [8] [0, 0, 0, 0, 0, 0, 0] ∅ ∅ ∅ ∅
5 [15] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4] [0, 0, 0, 0, 0, 0, 0] ∅ ∅ ∅

At the beginning of the algorithm the only information known about TX is that pX equals 3. We thus
start by initialising a matrix with 3 lines and 6 columns (the number of columns of TB) filled with empty
multisets. The expectedCardinalities array, which stores at any time the mandatory cardinalities of the
multisets at the next layer, is filled with pX ones. We will start by considering i = 1.

For the first layer (i.e., h = 1), let us consider the computation made by the algorithm for r up to 2:

r = 0→M2 = TA
0,1 ⊗ ∅ = [2]⊗ ∅, TX

0,1 = msDivision(TB
0,1 − ∅, TA

0,1) = msDivision([4], [2]) = [2]

r = 1→M2 = [5]⊗ ∅, TX
1,1 = msDivision([20], [5]) = [4]

r = 2→M2 = [2]⊗ ∅, TX
2,1 = msDivision([6], [2]) = [3]

Since we are on the first layer, expectedCardinalities is updated to be the sum of the computed multisets
minus 1 (since the cyclic preimage will be not considered). We will thus have [1, 3, 2].

From r = 3, the algorithm will now enter the verification phase and we will have:

r = 3→ TA
1,1 ⊗ TX

0,1 = TB
3,1, [5]⊗ [2] = [10]

r = 4→ TA
0,1 ⊗ TX

1,1 = TB
4,1, [2]⊗ [4] = [8]

r = 5→ TA
1,1 ⊗ TX

2,1 = TB
5,1, [5]⊗ [3] = [5]

For the second layer, the algorithm proceeds in the same way:

r = 0→M2 = TA
0,2 ⊗ TX

2,1 = [0]⊗ [3], TX
0,2 = msDivision(TB

0,2 − [0], TA
1,1) = msDivision([0, 10], [0, 5]) = [2]

r = 1→M2 = [0, 0, 0, 1]⊗ [2], TX
1,2 = msDivision([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2]) = [0, 0, 0]

r = 2→M2 = [0]⊗ [4], TX
2,2 = msDivision([0, 0, 0, 5], [0, 5]) = [0, 1]

No error is triggered since the cardinalities of the computed multisets match the expected ones. The
excpectedCardinalites array is then updated to be [2, 0, 1]. We can again check if these multisets work for
the remaining lines.
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r = 3→TA
1,2 ⊗ TX

0,2 + TA
0,1 ⊗ TX

0,2 + TA
1,2 ⊗ TX

2,1 = TB
3,2

[0, 0, 0, 1]⊗ [2] + [2]⊗ [2] + [0, 0, 0, 1]⊗ [3] = [0, 0, 0, 0, 0, 0, 2, 3, 4]

r = 4→TA
0,2 ⊗ TX

1,2 + TA
1,1 ⊗ TX

1,2 + TA
0,2 ⊗ TX

0,1 = TB
4,2

[0]⊗ [0, 0, 0] + [5]⊗ [0, 0, 0] + [0]⊗ [2] = [0, 0, 0, 0, 0, 0, 0]

r = 5→TA
1,2 ⊗ TX

2,2 + TA
0,1 ⊗ TX

2,2 + TA
1,2 ⊗ TX

1,1 = TB
5,2

[0, 0, 0, 1]⊗ [0, 1] + [2]⊗ [0, 1] + [0, 0, 0, 1]⊗ [4] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4]

Since no contradiction is found, the algorithm can go on.

3.3.2. Complexity

Each update ofM3 inmsDivision requires linear time w.r.t. the size ofM3. We repeat it for each element

of TX
r,h, namely, |M3|

|M1| times, with |M1| possibly equal to 1. Therefore, msDivision complexity is in O(|M3|2).
Due to the definition of the t-abstraction, we know that TB contains |VB | integer values partitioned into
the different TB

r,h. Since the msDivision is applied to all M3 (or TB
r,h −M2 with M2 potentially empty),

the worst case is when msDivision is applied to one M3 containing |VB | elements. If we consider also that

we go through the matrix, for a certain i, the complexity is in O(|PB | · hmax
B + |VB |2). Since we evaluate i

from 0 to |PA| − 1, the total complexity of the algorithm is O(|PA| · (|PB | · hmax
B + |VB |2)). Note that this

algorithm does not ensure that the corresponding equation over FGs has a solution. However, it ensures
that if the latter has solutions, they satisfy one of the t-abstractions found by the algorithm. Nevertheless,
if a valid t-abstraction is not found for X, one can conclude that the original Equation (2) is impossible.

3.4. An exponential algorithm for basic equations

This section introduces an exponential-time algorithm (Algorithm 2) which takes as input the FGs A
and B and an additional integer pX , and outputs all X which satisfy A × X ⊇ B. The polynomial-time
algorithm of the previous section can find all TX such that TA × TX ⊇ TB , if they exist. Unfortunately,
these solutions lack information to completely reconstruct the dynamics of X. Since the multisets are not
ordered, we cannot know which indegree of a TX

r,h is related to which node in NX
r,h−1. Figure 4 illustrates

this potential ambiguity. Each solution TX identifies an equivalence class of FGs respecting the abstraction.
This version of the algorithm is an evolution of the polynomial one and leads us to identify which of these
FGs are solutions of the original equation A×X ⊇ B.

3.4.1. Naive reconstruction

The most intuitive way to reconstruct the graph X, starting from TX (computed by Algorithm 1),
is to test all the possible connected FGs satisfying the t-abstraction. This corresponds to testing all
the ways to connect the elements of TX

r,h to the elements of NX
r,h−1 (level by level). Since |TX

r,h| =

|NX
r,h−1|, for a level h and an index r of a node on the cycle, we have |TX

r,h|! possibilities. Then, there

are
∏

(r,h)∈{0,...,pX−1}×{1,...,hmax
X }(|T

X
r,h|!) possible systems (not up to isomorphism). However, we know that

the polynomial algorithm returns at most one t-abstraction solution for each cyclic permutation of TA (i.e.,
one for each possible cyclic alignment of A on B). Then, according to Theorem 3.12, for each TX returned
by the polynomial method, there is just one possible graph that is a solution of the basic equation over FGs.
To verify if a graph is a solution, one can check if, in the graph obtained from the product of itself with A,
the component corresponding to the alignment considered before is isomorphic to B.

3.4.2. An improved approach

Knowing the full dynamics of A and B allows us to associate each integer in a multiset (i.e., each incoming
degree) of TA or TB with the corresponding node in the graph. In practice, this can be done by providing
the multisets with an order such that the k-th node in a NA

r,h has the corresponding k-th indegree in TA
r,h+1
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Algorithm 1: Polynomial t-abstraction

Input : TA, TB matrices of integer multisets, and pX positive natural number
Output: A list of solutions for TX

1 solutions← list();
2 forall i ∈ {1, . . . , | CA |} do
3 h← 1;
4 complete← false;
5 error ← false;
6 expectedCardinalities← [1] ∗ pX ;

7 TX ← emptyMatrix(pX , hmax
B );

8 while complete = false and error = false do
9 complete← true;

10 forall r ∈ {0, . . . , | CB | −1} do
11 if r < pX then
12 if expectedCardinalities[r] = 0 then
13 continue;

14 M2 ← TA
r+i−1,h ⊗ (

∑h−1
j=1 TX

r−j,h−j);

15 error, TX
r,h ← msDivision(TB

r,h −M2,
∑h−1

j=0 TA
r−j+i−1,h−j);

16 nextCardinality ← sum(TX
r,h);

17 error ← error ∨ (| TX
r,h |≠ expectedCardinalities[r]);

18 if h = 1 then
19 expectedCardinalities[r]← nextCardinality − 1;
20 else
21 expectedCardinalities[r]← nextCardinality;

22 if nextCardinality > 0 then
23 complete← false;

24 else

25 R← TA
r,h ⊗ (

∑h−1
j=0 TX

r−j+(i−1),h−j) + TX
r+(i−1),h ⊗ (

∑h−1
j=1 TA

r−j,h−j);

26 error ← (TB
r,h ̸= R);

27 if error then
28 break;

29 h← h+ 1;

30 if !error then
31 solutions.append(TX);

32 return solutions;

(the same applies for B). In the same way as the polynomial algorithm, this version will go through every
layer h of the transients to reconstruct X layer by layer.

At first, X consists only of a cycle of length pX . At level h = 1, the multisets computed as in the
polynomial algorithm are sufficient to reconstruct the dynamics of the first layer of X. Indeed, every TX

r,1

has only one element d. Then, we just attach, to the r-th cyclic node, d new nodes. At h = 2, the multisets
derived from the polynomial algorithm are still sufficient to reconstruct the dynamics because all nodes in
NX

r,1 are equivalent from a dynamics point of view. Then, for each d ∈ TX
r,2, we assign d predecessors to

an arbitrary node in NX
r,1 (which must still be a leaf). Now, the nodes in NX

r,2 are potentially no longer
equivalent. For this reason, starting from h = 3, the algorithm will make assumptions on which node of X
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at the layer h has generated which node of B at the same layer. These assumptions allow us to reconstruct
the next layer of X without ambiguity. We will call these assumptions the origins of the nodes of B. From
a graph point of view, the origins will be only labels on nodes of X and B such that all the nodes in B with
origin o are supposed to be generated by the node with label o in X. Let Or,h be the set of origins of the
nodes in a certain NB

r,h.

We now consider the computation of a generic layer h ≥ 3. Let us suppose that we know the origins of
the nodes in NB

r,h−2 (we will see later how origins are initialised). With this information, we can partition

the multiset TB
r,h into sub-multisets depending on the origin of the nodes in NB

r,h−2. Let N
B
r,h|o be the set of

all v ∈ NB
r,h such that fB(v) has origin o. Then, let TB

r,h|o be the multiset of indegrees of nodes v ∈ NB
r,h−1|o.

According to these definitions, TB
r,h =

∑
o∈Or,h−2

TB
r,h|o. We can also partition the multiset of unknowns

TX
r,h, as T

X
r,h =

∑
o∈Or,h−2

TX
r,h|o. Consequently, we can rewrite the equivalence of Proposition 3.1 as follows:

∑

o∈Or,h−2

TB
r,h|o =

∑

o∈Or,h−2


TX

r,h|o ⊗
h−1∑

j=0

TA
r−j,h−j


+ TA

r,h ⊗
h−1∑

j=1

TX
r−j,h−j . (4)

Note that there are some nodes in NB
r,h−1 which are not generated from a node in NX

r,h−1. These are
the nodes of a level of B that come from the multiplication of lower levels of X with the last level of A.
The indegrees of these nodes are the ones found in the second term (i.e., TA

r,h ⊗
∑h−1

j=1 TX
r−j,h−j), which we

denote M2 as in the previous section. These nodes are marked with a special origin (noted −1). Then, we
should always have TB

r,h|−1 = M2 (line 20 Algorithm 3). Let us point out that, according to this reasoning,
we indeed have that all the nodes attached to a node with −1 origin will also have −1 as origin.

Considering the definition of M1 (presented in Section 3.3) and Equation (4), we can now decompose
the product formula into smaller ones. We thus have TB

r,h|o = TX
r,h|o ⊗M1 for all o ∈ Or,h−2 \ {−1}. At this

point, we can compute each TX
r,h|o with msDivision. Once TX

r,h|o is known, we have to assign to each node

of NX
r,h−1|o one degree (i.e., a set of predecessors) from TX

r,h|o. However, we can notice that we brought the

problem back to the special case of h = 2. Indeed, each node of NX
r,h−1|o is connected to the same node

(the only one with origin o). This means that we can again, for each d ∈ TX
r,h|o, attach d new nodes to an

arbitrary node of NX
r,h−1|o (line 25 Algorithm 3). This mechanism is the key to reconstructing X layer by

layer without ambiguity.
Incidentally, each time we add a k-th new node in X, we set its label equal to k. In Algorithm 3, this

is handled by the attachNewNodes method which, in addition to creating the nodes, assigns to them the
corresponding origin1. Moreover, it returns true if at least one node is created. Hence, this ensures that
all nodes in X have a unique label. The returned value, for its part, allows us to know when no more new
nodes are added in X and thus when X has been completely reconstructed.

There still remains an issue: how to assign origins to the nodes in the layer of B. Up to now, we assigned
to each node inNX

r,h−1 a number of predecessors. This means that we also know for each node v ∈ NX
r,h−1|o all

the correlated degrees in TB
r,h|o. Indeed, if v has an incoming degree d, there is a sub-multiset Mv = [d]⊗M1

included in TB
r,h|o. We must then apply the origin of v as the origin of all corresponding nodes in NB

r,h−1|o.

In other words, for each element d′ in M1, we assign the origin of v to any node w in NB
r,h−1|o that has d · d′

predecessors. However, several choices may be possible. In fact, two nodes in NB
r,h−1|o can have the same

number of predecessors, and both can be valid choices at this point2. A possible approach is backtracking.
Namely, we choose one and we try to reconstruct the layers above (lines 31 and 33 of Algorithm 3). If the

1The cyclicGraph function Algorithm 3 automatically assigns origins while creating the cyclic nodes of X.
2The enumerateAssignments function takes as parameters a list of constraints over origins. The constraints are triplets

made of (i) the name of the origin, (ii) the multiset Mv of indegrees on which the origins must be assigned, and (iii) a set of
nodes among which we can assign it. It then outputs all the valid assignments (hashmaps linking nodes to origins).
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reconstruction of an above layer fails, the algorithm backtracks to the last choice made and tries another
origin assignment (lines 35 and 36). The enumeration of all valid choices for each layer is the cause of the
exponential time complexity. In a following section, we will present a better approach to deal with this
problem.

In any case, at this point, we have an almost complete technique for assigning origins to nodes. What
remains to be understood is how the special origin −1 is initialised. The first layer where the M2 term
appears is at height h = 2. The origins are not needed here to construct X but must be assigned for the
layer h = 3. We proceed as explained for h = 2, and then we only assign a −1 origin to all the nodes in NB

r,1

remaining without origins.

For the verification part, at each height h after having reconstructed the layer of X, we check that A×X
(considered only up to layer h) contains B (again only up to height h). The truncation of the graphs,
consisting of returning subgraphs by removing transient nodes in higher levels, is done by the function
truncate in Algorithm 3.

As for the polynomial algorithm, we actually repeat this whole mechanism for all cyclic alignments
(Algorithm 2). Let us point out that according to the results of Section 3.2, after finding a solution for a
cyclic alignment (i.e., for a value i), the algorithm starts calculating a new solution for another alignment
(even if not all possible origin assignments were explored via backtrack).

Algorithm 2: Exponential equation solver

Input : A, B connected functional graphs, and pX positive natural number
Output: A list of solutions for X

1 solutions← list();
2 forall i ∈ {1, . . . , | CA |} do
3 X ← cyclicGraph(pX) ; ▷ cyclicGraph also assign new origins on X

4 if findSolution(i, A,B,X, 1) then
5 solutions.append(clone(X)) ; ▷ A copy of X is saved as a solution

6 return solutions;

3.4.3. Another worked-out example

• • • • • • • • • • • •

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

• • • • •

•

(1) (2) (−1) (1) (2)

(0)

B

• • • •

• • •

• •

•(0)

(1) (2)

(3) (4) (5)

X

•

•

•

A

Figure 11: Three functional graphs A, X and B (origins are shown in parentheses).

We will show here an example for the reconstruction of one layer of X (the red one in Figure 11) and
the possible origin assignments on B. To construct this third layer of the dynamics of X, TB

0,3 according

to the origins of the nodes in NB
0,1: 1, 2 and −1. Indeed, we have TB

0,3|1 = [4, 2, 2, 1, 0, 0] (the indegrees of

v0, v1, v2, v3, v9 and v10), T
B
0,3|2 = [2, 1, 0] and TB

0,3|−1 = [0, 0, 0]. Then, we compute M1 = [0] + [1] + [2]
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Algorithm 3: findSolution

Input : i positive natural number, A, B, X connected functional graphs and h positive natural
number

Output: true if a solution has been reconstructed, false otherwise
(X is modified to be the solution, if it exists, and is not returned)

1 originsData← list() ; ▷ list giving, for a origin, the corresponding nodes in X and B

2 nodeAttached← false;
3 forall r ∈ {1, . . . , |CX |} do
4 if h = 1 then
5 error, TX

r,1 ← msDivision(TB
r,1, T

A
r+i−1,1);

6 nodeAttached← nodeAttached ∨ attachNewNodes(gX(r), TX
r,1[0]− 1);

7 originsData.append
(
(getOrigin(gX(r)), TB

r,1, [gB(r)])
)
;

8 if h = 2 then
9 M1 ← TA

r+i−2,1 + TA
r+i−1,2;

10 error, TX
r,2 ← msDivision(TB

r,2 − (TA
r+i−1,2 ⊗ TX

r−1,1),M1);

11 forall k ∈
{
0, . . . , |TX

r,2| − 1
}
do

12 nodeAttached← nodeAttached ∨ attachNewNodes(NX
r,1[k], T

X
r,2[k]);

13 originsData.append
(
(getOrigin(NX

r,1[k]), T
X
r,2[k]⊗M1, N

B
r,1)

)
;

14 originsData.append
(
(−1, TA

r+i−1,2 ⊗ TX
r−1,1, N

B
r,1)

)
;

15 if h > 2 then

16 M1 ←
∑h−1

j=0 TA
r−j+i−1,h−j ;

17 M2 ← TA
r+i−1,h ⊗ (

∑h−1
j=1 TX

r−j,h−j);

18 forall o ∈ Or,h−2 do
19 if o = −1 then
20 error ← (M2 ̸= TB

r,h|−1);

21 originsData.append
(
(−1,M2, N

B
r,h−1|−1)

)
; ▷ −1 origins automatically propagate

22 else
23 error, TX

r,h|o ← msDivision(TB
r,h|o,M1);

24 forall k ∈
{
0, . . . , |TX

r,h|o| − 1
}

do

25 nodeAttached← nodeAttached ∨ attachNewNodes(NX
r,h−1|o[k], T

X
r,h|o[k]);

26 originsData.append
(
(getOrigin(NX

r,h−1|o[k]), T
X
r,h|o[k]⊗M1, N

B
r,h−1|o)

)
;

27 if error or ¬(truncate(A, h)×X ⊇ truncate(B, h)) then
28 return false;

29 if ¬nodeAttached and (A×X ⊇ B) then
30 return true;

31 forall origins ∈ enumerateAssignements(originsData) do
32 applyOrigins(B, origins);
33 if findSolution(i, A,B,X, h+ 1) then
34 return true;

35 detachOrigins(B, origins);

36 X ← truncate(X,h− 1);
37 return false;
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and M2 = [0] ⊗ ([2, 1] + [3]) = [0, 0, 0]. After checking that M2 is equal to TB
0,3|−1, we can compute, with

the msDivision technique, TX
0,3|1 such that M1 ⊗ TX

0,3|1 = TB
0,3|1 or [2, 1, 0] ⊗ TX

0,3|1 = [4, 2, 2, 1, 0, 0]. We

found that TX
0,3|1 = [1, 2], which we can directly apply to the nodes in X with label 3 and 4 (since they are

connected to the node with origin 1). We compute in the same way TX
0,3|2 = [1].

Finally, we assign to the nodes in NB
0,2 the origins 3, 4 and 5. Nodes v4, v5 and v11 will receive the origin

5 and nodes v6, v7 and v8 will receive the origin −1. For the origins 3 and 4, we can fix one of each for the
two nodes v9 and v10. In fact, the assignment chosen for nodes without predecessors will have no impact on
the reconstruction of higher levels. For the nodes (v0, v1, v2, v3), since both nodes in X can produce a node
with incoming degree 2 in B, we will have to test the two assignments (3, 3, 4, 4) and (3, 4, 3, 4).

3.4.4. Optimised assignment of origins.

To reduce the number of possibilities and to avoid impossible assignments, we consider the height of
the transients of A and B. For some v ∈ V , let H(v) be the height of the sub-in-tree rooted at v (with
just the root that can be a cyclic node, in the case of v ∈ C). For each node v ∈ NX

r,h−1|o, we know

that it generates the subset Mv = [d] ⊗M1. Let us consider an element d′ of M1 and the corresponding
node u in A. According to our reasoning, one can give the label of v to any node in NB

r,h−1|o with d · d′
predecessors. However, according to the product definition, a node w of B, generated by u of A and v of X,
has H(w) = min {H(u),H(v)}. Then, we can only choose nodes w in NB

r,h−1|o with d · d′ predecessors and

such that H(w) ≤ H(u). In line with the direct product definition, we can use this optimisation technique
if both u and v are transient nodes.

3.4.5. A concluding example

Let us consider A, X, and B of Figure 12.

A X B
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Figure 12: Relevance of height for the assignment of origins. The red part of X is only shown to foretell the result of the
reconstruction of the third level.

After having computed the second layer of X, one needs to assign one origin among three possible choices
(1, 2, and −1) for each of the eight nodes wi in B. Let us compute for each origin the multiset of degrees
that the nodes must have:

o = −1→ TA
0,2 ⊗ TX

0,1 = [1, 2]⊗ [3] = [3, 6],

o = 1→ [2]⊗ (TA
0,2 + TA

0,1) = [2]⊗ [1, 2, 3] = [2, 4, 6],

o = 2→ [1]⊗ (TA
0,2 + TA

0,1) = [1]⊗ [1, 2, 3] = [1, 2, 3].

Following only the rules on the indegrees, some nodes can be given origins without ambiguity. The node
w0, being the only one having indegree 4, must have origin 1, and w4 (with indegree 1) must have origin 2.
However, several possibilities exist for the other ones:

21



• w1 and w3 (with both indegree 2) can either have the origin 1 or 2,

• w5 and w7 (with both indegree 3) can either have the origin −1 or 2,

• w2 and w6 (with both indegree 6) can either have the origin −1 or 1.

This gives us 8 possible assignments. However, by looking at the heights of the subgraphs, we can reduce
the number of possible assignments to only one. First, the nodes wi in B originating from a node u ∈ NA

0,1

and the cyclic point of X (and hence having a −1 origin) must have H(wi) = H(u). As previously said,
the height cannot be higher, and moreover, there must also be, in the in-tree rooted in wi, a sub-in-tree
corresponding to the in-tree rooted in u (i.e., repeatedly multiplied with the cyclic point of X), which must
have height H(u). As a consequence, w6 and w7 cannot be the nodes generated by the Cartesian product
of the cyclic node of X and the nodes in NX

0,1 because H(w6) < 2 and H(w7) > 1. On the other hand, the
node having indegree 2 and origin 1 cannot have a rooted subtree of height exceeding 1 since it is supposed
to originate from a node u′ ∈ NA

0,1 with H(u′) = 1. Therefore, w1 can be excluded. Eventually, the origins
for the nodes w0, . . . , w7 are 1, 2, −1, 1, 2, −1, 1 and 2.

3.4.6. Complexity.

To compute the complexity of this approach, we must study the total number of assignments for a
certain layer. To do so, one has to know the number of distinct TB

r,h|o at this layer and their lengths. The

first corresponds to the number of possible origins (i.e., the number of nodes in X in a layer), which is
|VX |
hmax
B

(hmax
X will be at most hmax

B ). For their sizes, the number of nodes in a layer of B can be bounded as
|VB |
hmax
B

. However, the algorithm considers only the first pX values of r, then we have |VB |·pX

hmax
B ·|CB | as a bound.

From the explanation of the algorithm, the combinatorial assignment of origins is computed on the equal
indegrees in a TB

r,h|o. We assume that the number of different incoming degrees is equal to the maximal
one. We denote it as dmax. Therefore, the total number R of possible assignments of origins for a layer is
(

|VB |·pX

|VX |·|CB |·dmax
!
) |VX |·dmax

hmax
B . Since the origins are computed in every layer and this whole process is repeated

for each alignment of A and B, the total complexity is O(|CA| · (Rhmax
B )).

3.4.7. An experimental evaluation.

We evaluated the exponential-time algorithm introduced in this section to investigate the performances
over different instances3. The results of our analysis are shown in Figure 13. For this experimental evaluation,
we generated random instances of equations over connected FGs according to different parameters.

For the three plots above, we tested cases with |CA| and |CX | distinct prime numbers (this ensures
gcd(|CA|, |CX |) = 1), since it represents the worst case scenario in which all nodes of B are in one connected
component. As the total number of nodes is always the same for A and X, we can remark that the axes
also give the information on the number of transient nodes (inversely proportional to the cycle lengths). We
compared the naive reconstruction algorithm of X (left column of Figure 13) to our approach, with (right)
and without (middle) height optimisation. As one might have guessed, the naive algorithm strongly depends
on the number of transient nodes of X. Indeed, the naive one does not take into account the information
on the dynamics of B and A, but just their t-abstractions to compute TX . Our approach, on the other
hand, applies the combinatorial reasoning on elements of B instead of X. It depends consequently on the
number of transient nodes of A and X, as B does. As explained in the section above, TB

r,h|o comes from a

multiplication of M1 (which comes from A) and TX
r,h|o (which comes from X). If one of the two is smaller,

the resulting TB
r,h|o will be smaller as well. This will decrease the number of possible assignments. The

drawback is when X has much fewer transient nodes than A. In this case, the combinatorics given by a

3We ran all the experiments on an AMD EPYC 7301 processor running at 2.2 GHz, with 128 GiB of RAM. The algorithm
has been implemented in Python 3.9.12 and run with version 7.3.9 of PyPy.
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Figure 13: Plots showing the proportion of random instances solved in less than 1 second over the 50 cases executed for each
box. The three plots above are based on 30000 instances with A and X of 100 nodes each, and B of 10000 nodes, with increasing
cycle lengths for A (x-axis) or X (y-axis). The three plots below are on 9500 instances with A, X and B having only one cyclic
node and an increasing number of nodes (x-axis) and maximum indegree (y-axis), for both A and X.

simple naive reconstruction of the graph of X from its abstraction would be more efficient as there are fewer
possible cases. This explains why the naive algorithm performs better in the far left region of the plots.

The optimisation over the assignment of origins turns out to be relevant to delaying the exponential
growth of the algorithm. Note that, in emphasis with our conjecture, we considered the time up to the
moment that the first solution is found. If we wanted to enumerate all solutions, the time would be multiplied
by a linear factor.

As smaller cycle lengths tend to increase the execution time, we studied the extreme case of |CA|, |CX |
and |CB | equal to 1 (i.e., the plots below). As in the previous study, the naive algorithm depends almost
exclusively on the number of transient points of X. It appears to be efficient only when the incoming degree
of each node is at most 2. It is a special case where many symmetries are involved and where a great
number of distinct permutations lead to isomorphic dynamics. In the two other plots, the distribution of
the incoming degree plays a greater role. One may think that greater indegrees lead to wider layers and to
more combinatorics. Surprisingly, the maximum incoming degree decreases the execution time. Actually,
the combinatorial aspect is correlated to the number of nodes with the same indegree. This allows us to
have much better results than the naive approach as the maximum indegree grows. We notice that also in
these cases the combinatorial optimisation improves the performances of the algorithm4.

4. Conclusion and Future Work

We analysed basic linear equations over functional graphs. We proposed t-abstractions to model some
information about the transient structure of FGs. By representing FGs mainly through the indegree of
the transient nodes, we achieved three main results. First, we found an upper bound to the number of
possible solutions to equations over t-abstractions, as well as for equations over FGs. Then, we introduced

4The performance loss for low degrees comes from the graph generation routine which tends to create balanced in-trees.
Thus, the height upgrade cannot overcome the extra time of the optimisation itself.
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two different algorithms. The polynomial one (Algorithm 1) finds all solutions of basic equations over t-
abstractions. The second algorithm (Algorithm 2) reconstructs the actual graph solutions, which is not
immediate even with the t-abstraction. We experimentally observed that this algorithm has good results
in most cases and can compute solutions of equations with a large number of nodes in the known term,
despite its exponential runtime. Finally, we introduced some further optimisations by considering interesting
properties of the direct product computed over functional graphs and succeeded in pushing back a little more
the exponential cost.

Future research directions comprise the further exploration of the connection with the cancellation prob-
lem. In particular, to prove Conjecture 3.14 using our approach, and to better understand the correlation
between the outgoing degree of digraphs and cancellation. Of course, another future development consists
in trying to solve more complex equations. In particular, equations of the form TX · TX ⊇ TB represent an
important step forward to the solution of generic polynomial equations over t-abstractions (with a constant
right-hand side). We also want to set up a full pipeline to decide or find solutions to these more complex
equations, by using the results on the basic equations, with a divide-and-conquer strategy. Finally, it is
necessary to investigate the form and the relations between different solutions (when they exist) of an equa-
tion over FGs, to discover if they exhibit some structure, for instance in terms of combinatorics, or from an
algebraic point of view and to try to exploit these properties to conceive new improved algorithms.
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