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Abstract. We prove that all-parallel enzymatic numerical P systems
whose production functions can be expressed as a combination of sums,
differences, products and integer divisions characterise PSPACE when
working in polynomial time. We also show that, when only sums and
differences are available, exactly the problems in P can be solved in
polynomial time. These results are proved by showing how EN P systems
and random access machines, running in polynomial time and using the
same basic operations, can simulate each other efficiently.

1 Introduction

Numerical P systems have been introduced in [8] as a model of membrane sys-
tems inspired both from the structure of living cells and from economics. Each
region of a numerical P system contains some numerical variables, that evolve
from initial values by means of programs. Each program consists of a production
function and a repartition protocol ; the production function computes an output
value from the values of some variables occurring in the same region in which the
function is located, while the repartition protocol distributes this output value
among the variables in the same region as well as in the neighbouring (parent
and children) ones.

In [8], and also in Chapter 23.6 of [9], some results concerning the compu-
tational power of numerical P systems are reported. In particular, it is proved
that nondeterministic numerical P systems with polynomial production func-
tions characterize the recursively enumerable sets of natural numbers, while de-
terministic numerical P systems, with polynomial production functions having
non-negative coefficients, compute strictly more than semilinear sets of natural
numbers.

Enzymatic Numerical P systems (EN P systems, for short) have been intro-
duced in [10] as an extension of numerical P systems in which some variables,
named the enzymes, control the application of the rules, similarly to what hap-
pens in P systems with promoters and inhibitors [2]. As shown in [11, 3] and
references therein, the most promising application of EN P systems seems to be
the simulation of control mechanisms of mobile and autonomous robots.



The computational power of EN P systems has also been thoroughly investi-
gated. In [6] a short review of previously known universality results is presented,
together with an improvement on some of them: linear production functions in-
volving only one variable suffice to obtain universality in the one-parallel and
all-parallel modes.

In this paper we deal with computational complexity issues, and show how
the choice of arithmetical operations allowed in the production functions influ-
ences the efficiency of computation of all-parallel EN P systems, exactly as it
happens for random access machines [5]. Indeed, we prove that these two com-
putation devices can simulate each other efficiently in some relevant cases. As
a consequence, we show the limitations of linear production functions, and how
these are overcome by allowing multiplication and integer division, leading to
polynomial time solutions to PSPACE-complete problems.

The paper is organised as follows. In Section 2 we recall the definitions of
EN P systems and random access machines, together with the relevant results
from the literature. In Section 3 we show, as a technical result, how indirect
addressing can be eliminated when RAMs operate in polynomial time, thus
simplifying the simulation by means of all-parallel EN P systems that is presented
in Section 4. The converse simulation is illustrated in Section 5, leading to our
main result about the computational complexity of all-parallel EN P systems.
Finally, conclusions and open problems are described in Section 6.

2 Definitions and Previous Results

An enzymatic numerical P system (EN P system, for short) is a construct of the
form:

Π =
(
m,H, µ, (Var1,Pr1,Var1(0)), . . . , (Varm,Prm,Varm(0))

)
where m ≥ 1 is the degree of the system (the number of membranes), H is
an alphabet of labels, µ is a tree-like membrane structure with m membranes
injectively labeled with elements of H, Var i and Pr i are respectively the set of
variables and the set of programs that reside in region i, and Var i(0) is the vector
of initial values for the variables of Var i. All sets Var i and Pr i are finite. In the
original definition of EN P systems [10] the values assumed by the variables
may be real, rational or integer numbers; in what follows we will allow instead
only integer numbers. The variables from Var i are written in the form xj,i, for j
running from 1 to |Var i|, the cardinality of Var i; the value assumed by xj,i at
time t ∈ N is denoted by xj,i(t). Similarly, the programs from Pr i are written in
the form Pl,i, for l running from 1 to |Pr i|.

The programs allow the system to evolve the values of variables during com-
putations. Each program is composed of two parts: a production function and
a repartition protocol. The former can be any function using variables from the
region that contains the program. Using the production function, the system
computes a production value, from the values of its variables at that time. This
value is distributed to variables from the region where the program resides, and to



variables in its upper (parent) and lower (children) compartments, as specified by
the repartition protocol. Formally, for a given region i, let v1, . . . , vni

be all these
variables; let x1,i, . . . , xki,i be some variables from Var i, let Fl,i(x1,i, . . . , xki,i)
be the production function of a given program Pl,i ∈ Pr i, and let cl,1, . . . , cl,ni

be natural numbers. The program Pl,i is written in the following form:

Fl,i(x1,i, . . . , xki,i)→ cl,1|v1 + cl,2|v2 + · · ·+ cl,ni
|vni

(1)

where the arrow separates the production function from the repartition protocol.
Let Cl,i =

∑ni

s=1 cl,s be the sum of all the coefficients that occur in the repartition
protocol. If the system applies program Pl,i at time t ≥ 0, it computes the value

q =
Fl,i(x1,i(t), . . . , xki,i(t))

Cl,i

that represents the “unitary portion” to be distributed to variables v1, . . . , vni

proportionally with coefficients cl,1, . . . , cl,ni . So each of the variables vs, for
1 ≤ s ≤ ni, will receive the amount q · cl,s. An important observation is that
variables x1,i, . . . , xki,i involved in the production function are reset to zero after
computing the production value, while the other variables from Var i retain their
value. The quantities assigned to each variable from the repartition protocol are
added to the current value of these variables, starting with 0 for the variables
which were reset by a production function. As pointed out in [12], a delicate
problem concerns the issue whether the production value is divisible by the
total sum of coefficients Cl,i. As it is done in [12], in this paper we assume that
this is the case, and we deal only with such systems; see [8] for other possible
approaches.

Besides programs (1), EN P systems may also have programs of the form

Fl,i(x1,i, . . . , xki,i)|ej,i → cl,1|v1 + cl,2|v2 + · · ·+ cl,ni
|vni

where ej,i is a variable from Var i different from x1,i, . . . , xki,i and v1, . . . , vni
.

Such a program can be applied at time t only if ej,i(t) > min(x1,i(t), . . . , xki,i(t)).
Stated otherwise, variable ej,i operates like an enzyme, that enables the execu-
tion of the program but, as happens with catalysts, it is neither consumed nor
modified by the execution of the program. However, in EN P systems enzymes
can evolve by means of other programs, that is, enzymes can receive “contribu-
tions” from other programs and regions.

A configuration of Π at time t ∈ N is given by the values of all the vari-
ables of Π at that time; in a compact notation, we can write it as the sequence
(Var1(t), . . . ,Varm(t)), where m is the degree of Π. The initial configuration
can thus be described as the sequence (Var1(0), . . . ,Varm(0)). The system Π
evolves from an initial configuration to other configurations by means of compu-
tation steps, in which one or more programs of Π (depending upon the mode of
computation) are executed. In [12], at each computation step the programs to be
executed are chosen in the so called sequential mode: one program is nondeter-
ministically chosen in each region, among the programs that can be executed at



that time. Another possibility is to select the programs in the so called all-parallel
mode: in each region, all the programs that can be executed are selected, with
each variable participating in all programs where it appears. Note that in this
case EN P systems become deterministic, since nondeterministic choices between
programs never occur. A variant of parallelism, analogous to the maximal one
which is often used in membrane computing, is the so called one-parallel mode:
in each region, all the programs which can be executed can be selected, but the
actual selection is made in such a way that each variable participates in only one
of the chosen programs. We say that the system reaches a final configuration if
and when it happens that no applicable set of programs produces a change in
the current configuration.

EN P systems may be used as (polynomial) time-bounded recognising devices
as follows. Notice that we use two variables (instead of just one of them), named
accept and reject , to signal the end of computations. This is done because some
programs of the system may be applied forever, causing the system to never halt
even if the configuration does not change any more. By using two variables, the
event of reaching a final configuration is made visible and distinguishable from
the outside.

Definition 1. Let L ⊆ {0, 1}? be a language, and let Π be a deterministic
EN P system with two distinguished variables accept and reject . We say that Π
decides L in polynomial time iff, for all x ∈ {0, 1}?, when the integer hav-
ing binary representation 1x is initially given to a specified input variable1 the
P system Π reaches a final configuration such that

– if x ∈ L, then accept = 1 and reject = 0
– if x /∈ L, then accept = 0 and reject = 1

within a number of steps bounded by O(|x|k) for some k ∈ N.

As proved in [6], every all-parallel and one-parallel EN P system can be “flat-
tened” into an equivalent (both in terms of output and number of computation
steps) system having only one membrane. For simplicity, in the following sections
we shall always deal with flattened EN P systems.

The proofs in this paper will be based on random access machines [7, 5]. We
define the specific variant we will employ:

Definition 2 (RAM). A random access machine consists of an infinite number
of registers (ri : i ∈ N) having values in N, initially set to zero, and a finite
sequence of instructions injectively labelled by elements ` ∈ N. The instructions
are of the following types:

– assignment of a constant k ∈ N: “` : ri := k” (ri is assigned a constant value)
– copying a register: “` : ri := rj” (ri is assigned the content of a fixed register)
– indirect addressing: “` : ri := rrj ” (ri is assigned the content of a register

whose number is given by a fixed register)
1 The “1” is prefixed to the input string x in order to keep the leading zeroes.



– arithmetic operations, with • ∈ {+,−,×,÷}: “` : ri := rj • rk”
– conditional jump, with `1, `2 ∈ N: “` : if ri 6= 0 then `1 else `2”
– halt and accept: “` : accept”
– halt and reject: “` : reject”.

The labels of the instructions will sometimes be left implicit.
We assume, without loss of generality, that it is never the case that a reg-

ister or a label are mentioned multiple times in the same instruction (e.g.,
in “` : ri := rj • rk” we assume i 6= j, j 6= k, and i 6= k).

Since RAMs operate on natural numbers, we only allow non-negative sub-
traction, i.e., x− y = 0 when y > x.

Definition 3. Let L ⊆ {0, 1}? be a language, and let M be a RAM. We say
that M decides L in polynomial time iff, for all x ∈ {0, 1}?, when the inte-
ger having binary representation 1x is loaded into a specified input register, the
machine M behaves as follows:

– if x ∈ L, then M reaches an “accept” instruction
– if x /∈ L, then M reaches a “reject” instruction

within a number of steps bounded by O(|x|k) for some k ∈ N.

In the rest of this paper we will denote the class of random access machines
using the set of basic operations X ⊆ {+,−,×,÷} by RAM(X), and the class of
all-parallel EN P systems whose production functions can be expressed in terms
of X by ENP(X). In particular, we are interested in all-parallel EN P systems
having linear production functions, ENP(+,−), and those with production func-
tions consisting of polynomials augmented by integer division, ENP(+,−,×,÷).

We shall also employ the following notation for complexity classes:

Definition 4. Let D be one of the classes of computing devices described above.
Then, by P-D we denote the class of decision problems solvable in polynomial
time by devices of type D.

The computational power of polynomial-time RAMs is strictly dependent on
the set of basic operations that can be computed in a single time step. When
only addition and subtraction are available, then polynomial-time RAMs are
equivalent to polynomial-time Turing machines [4].

Proposition 1. P-RAM(+,−) = P. ut

On the other hand, multiplication and division considerably increase the
efficiency of polynomial-time RAMs [1]:

Proposition 2. P-RAM(+,−,×,÷) = PSPACE. ut



1 e := y
2 z := 1
3 while e > 0 do
4 {xe × z = xy}
5 p := 1
6 p′ := 2
7 a := x
8 a′ := x× x
9 while p′ ≤ e do

10 p := p′

11 p′ := p′ + p′

12 a := a′

13 a′ := a′ × a′

14 end
15 {e− p ≤ e/2}
16 e := e− p
17 z := z × a

18 end


O(log y) iterations



O(log y) iterations

Fig. 1. Polynomial-time exponentiation algorithm by repeated squaring.

3 Avoiding Indirect Addressing

In this section we recall how indirect addressing may be eliminated from random
access machines by encoding any number of registers as a single large integer.
The resulting machine only needs a constant number of registers and, when the
original machine runs in polynomial time, the slowdown is only polynomial.

In order to eliminate indirect addressing we employ multiplication, integer
division and exponentiation. The first two operations, which are built-in on
a RAM(+,−,×,÷), can be computed in quadratic time by a RAM(+,−) using
repeated doubling.

Proposition 3. The product x × y and the quotient x ÷ y can be computed
in O

(
(log y)2

)
time and O

(
(log x)2)

)
time respectively by a RAM(+,−) using a

constant number of auxiliary registers. ut

Exponentiation can be also computed in polynomial time, using a repeated
squaring algorithm, both by a RAM(+,−) and a RAM(+,−,×,÷).

Proposition 4. The exponential xy can be computed in O
(
(log y)2

)
time by

a RAM(+,−,×) and in O
(
(y log y log x)2

)
time by a RAM(+,−) using a con-

stant number of auxiliary registers.

Proof. The algorithm of Fig. 1 computes z := xy by repeated squaring.
The outermost loop maintains the invariant xe × z = xy, and the innermost

loop computes the largest power 2i less than or equal to e, which is then sub-
tracted from e, thus reducing the value of this register by half or more (hence,



eventually, to 0); the product of the values x2
i

is accumulated into z. In other
words, the algorithm computes the value xy as

xy = xym2m × xym−12
m−1

× · · · × xy12
1

× xy02
0

= xym2m+ym−12
m−1+···+y12

1+y02
0

where ymym−1 · · · y1y0 is the binary expansion of y.
Each line of the algorithm is performed by a RAM(+,−,×) in constant time,

for a total of O
(
(log y)2

)
time. On a RAM(+,−), the product of line 8 is com-

puted in O
(
(log x)2

)
time, and the products of lines 13 and 17 in O

(
(log xy)2

)
=

O
(
(y log x)2

)
time, since a reaches the value xy in the worst case (i.e., when y

is a power of 2). The total time is thus O
(
(y log y log x)2

)
. ut

An arbitrary random access machine never uses more registers than time
steps; however, in principle, the largest register index employed can be exponen-
tial on a RAM(+,−), or even doubly exponential on a RAM(+,−,×,÷). The
following proposition [5] obviates the problem.

Proposition 5. Let M be a RAM with addition, subtraction and possibly mul-
tiplication and division, working in time t(n). Then there exists a RAM with the
same basic operations working in time O

(
t(n)2

)
, having the same output as M ,

and using only its first O
(
t(n)

)
registers. ut

The three Propositions 3, 4, and 5 allow us to simulate indirect addressing
from polynomial-time RAMs with a polynomial slowdown.

Proposition 6. Let M1 be a RAM(+,−) (respectively, a RAM(+,−,×,÷))
working in polynomial time O(nk). Then, there exists a RAM(+,−) (resp.,
a RAM(+,−,×,÷)) M2 working in O

(
n8k(log n)2

)
time (resp., O

(
n2k(log n)2

)
)

and computing the same result as M1 without using indirect addressing.

Proof. SinceM1 works in polynomial time, by Proposition 5 there exists another
RAMM ′1 with the same output asM1, working in polynomial time t = c1n

2k+c0
and using at most the first m = d1n

k + d0 registers (for some c0, c1, d0, d1 ∈ N).
The machine M2 simulates M ′1 as follows. All the registers (r0, . . . , rm−1)

of M ′1 are stored in a single register r of M2 as a base-b number:

r = bm−1rm−1 + bm−2rm−2 + · · ·+ b1r1 + b0r0.

The base b is one more than the largest number that can ever be stored in a
register by M ′1, which can be computed as follows:

– IfM ′1 is a RAM(+,−), the most expensive instruction (in terms of magnitude
of the values of the registers) is “x := x + x”, where x is the input register.
After t steps, the value of any register is thus bounded by 2tx, and we choose
b = 2tx+ 1.



– IfM ′1 is a RAM(+,−,×,÷), then the most expensive instruction is squaring,
i.e., “x := x×x”, leading to an upper bound of x2

t

after t steps. In this case,
we choose b = x2

t

+ 1.

Notice that r has an upper bound of bm+1.
The machine M2 first computes the length n = O(log x) of the input (con-

tained in the register x) as follows:

1 y := x
2 n := 0
3 while y 6= 0 do
4 y := y ÷ 2
5 n := n+ 1

6 end

This requires O(log x) steps on a RAM(+,−,×,÷), and O
(
(log x)3

)
steps on

a RAM(+,−), due to the cost of the division of line 4.
M2 then computes the number of steps t of M ′1 to be simulated:

7 t := c1n
2k + c0

Line 7 can be executed in O(1) time by a RAM(+,−,×,÷), since k, c0, and c1
are constants; on a RAM(+,−) the time is O

(
(log n)2

)
= O

(
(log log x)2

)
. Notice

that evaluating such complex expressions only requires a constant number of
auxiliary registers.

The base b described above is then computed. For a RAM(+,−) the calcu-
lation is

8 b := 2tx+ 1

which executes in O
(
(t log t)2 + (log x)2

)
= O

(
(n2k log n)2

)
time.

For a RAM(+,−,×,÷) the calculation is

8 b := x2
t

+ 1

which executes in O(t2) = O(n4k) time.
The last phase of the initialisation of M2 sets up register r, which initially

contains only x in its 0-th position:

9 r := x

Every time a register of M ′1, say ri (with i a constant), has to be read, its value
can be extracted from the register of r of M2 and stored in an auxiliary register,
say y, as follows:

y := (r ÷ bi) mod b



where a mod b = a− (a÷ b× b). This requires

O
(
(log b)2 + (log r)2

)
= O

(
(log b)2 + (log bm+1)2

)
= O

(
(log bm+1)2

)
= O

(
(m log b)2

)
= O

(
((d1n

k + d0) log(2
tx+ 1))2

)
= O

(
(nk(t+ log x))2

)
= O(n6k)

time on a RAM(+,−), and O(1) time on a RAM(+,−,×,÷).
If indirect access is needed, that is, we read ri where i < m is not a constant,

then the computation time becomes

O
(
(i log i log b)2 + (log r)2

)
= O

(
(m logm log b)2 + (m log b)2

)
= O

(
(m logm log b)2

)
= O

(
(nk log n log b)2

)
= O

(
(nk log n · (t+ log x))2

)
= O

(
(nk log n · n2k)2

)
= O

(
(n3k log n)2

)
= O

(
n6k(log n)2

)
on a RAM(+,−), and

O
(
(log i)2

)
= O

(
(logm)2

)
= O

(
(log n)2

)
on a RAM(+,−,×,÷). Hence, reading a register of M ′1 (and, in particular,
indirect addressing) can be simulated in polynomial time both on a RAM(+,−)
and on a RAM(+,−,×,÷).

The operation of writing the value of a register y of M2 into a simulated
register ri of M ′1 is similar:

1 z := (r ÷ bi) mod b
2 r := r − (z × bi) + (y × bi)

and has the same asymptotical time complexity as above (keeping in mind that i
is a constant in this case).

We can now finally describe how the instructions ofM ′1 are simulated byM2.

– Assignment of a constant “ri := c”
z := (r ÷ bi) mod b
r := r − (z × bi) + (c× bi)

– Copying the value of a register “ri := rj”
y := (r ÷ bj) mod b
z := (r ÷ bi) mod b
r := r − (z × bi) + (y × bi)

– Copying the value of a register through indirect addressing “ri := rrj ”
y := (r ÷ bj) mod b
y′ := (r ÷ by) mod b
z := (r ÷ bi) mod b
r := r − (z × bi) + (y′ × bi)



– Arithmetical operations “ri := rj • rk” with • ∈ {+,−} (for a RAM(+,−))
or • ∈ {+,−,×,÷} (for a RAM(+,−,×,÷))

y1 := (r ÷ bj) mod b
y2 := (r ÷ bk) mod b
y := y1 • y2
z := (r ÷ bi) mod b
r := r − (z × bi) + (y × bi)

– Conditional jump “if ri 6= 0 then `1 else `2”
y := (r ÷ bi) mod b
if y 6= 0 then `′1 else `′2

where `′1 (resp., `′2) is the label of the first of the instructions ofM2 simulating
the instruction `1 (resp., `2) of M ′1.

The discussion above implies that simulating each instruction of M ′1 requires at
most O

(
n6k(log n)2

)
for a RAM(+,−), and O

(
(log n)2

)
for a RAM(+,−,×,÷).

Hence, the total number of steps to complete the simulation is O
(
n8k(log n)2

)
and O

(
n2k(log n)2

)
respectively. ut

4 Simulating RAMs without Indirect Addressing

We now prove that each RAM, whose instructions satisfy the mild constraints
we have imposed in the definition, and do not use indirect addressing, can be
simulated by an appropriate EN P system working in the all-parallel mode. The
simulation is efficient, in the sense that each RAM instruction is simulated in
just one step.

Theorem 1. Let M be a RAM that does not use indirect addressing. Then, for
each instruction of M there exists a set of programs for an all-parallel EN P
system Π that simulates it in one computation step.

Proof. We proceed by examining all possible cases. In what follows, z is a variable
whose value is always zero, variables ri, rj , rk represent registers of M (contain-
ing non negative integer values), and variables p` assume values in {0, 1} to
indicate the next instruction of M to be simulated.

RAM instructions of type “` : ri := k” can be simulated by the following set
of all-parallel programs:

0ri + k + z|p`
→ 1|ri

p` → 1|p`+1

When p` = 0 the first program is not executed, while the second program ze-
roes p` (thus leaving its value unaltered) and gives a contribution of zero to
variable p`+1, thus behaving as a nop (No OPeration). Hence no interference is
produced in the variables involved in the RAM instruction currently simulated.
On the other hand, if p` = 1 then the first program first zeroes ri and then



assigns the value k to it, while the second program zeroes p` and sets p`+1 to 1,
thus pointing to the next instruction of M to be simulated.

Assignment instructions of type “` : ri := rj”, with j 6= i, can be simulated
using the following programs:

0ri + 2rj + z|p`
→ 1|ri + 1|rj

p` → 1|p`+1

As in the previous case, when p` = 0 the first program is not active while the
second one operates like a nop. When p` = 1, instead, the first program first
zeroes both ri and rj and then assigns to them the old value of rj ; the second
program, as before, passes the control to instruction `+1. Albeit in our definition
of RAMs we have avoided the case when j = i, here we just observe that we can
also easily deal with it: we simply remove the first program, since in this case it
always operates like a nop.

Arithmetic instructions of type “` : ri := rj • rk”, with • ∈ {+,−,×,÷}
and i 6= j, j 6= k, and i 6= k, can be simulated as follows:

0ri + rj • rk + z|p`
→ 1|ri

rj + z|p`
→ 1|rj (2)

rk + z|p`
→ 1|rk (3)

p` → 1|p`+1

When p` = 0 the first three programs are not executed, while the last program
behaves as a nop. On the other hand, if p` = 1 then the first program first zeroes
variables ri, rj and rk, and then it assigns to ri the result of the operation rj •rk,
using the old values of rj and rk. Programs (2) and (3) are used to preserve the
old values of variables rj and rk, whereas the last program passes the control to
instruction `+ 1.

Finally, instructions of type “` : if ri 6= 0 then `1 else `2”, with ` 6= `1, ` 6= `2,
and `1 6= `2, can be simulated by the following programs:

p` → 1|p`1
ri − 1|p`

→ 1|p`1 (4)
ri + 1|p`

→ 1|p`2 (5)

in which we assume ri 6= 0 and correct if this is not the case. Note, in particular,
that programs (4) and (5) are active if and only if p` = 1 and ri = 0. So,
when p` = 0 only the first program is executed, behaving as a nop. When p` = 1
and ri > 0, the first program passes the control to instruction `1 whereas the
other two programs are not executed. Finally, when p` = 1 and ri = 0 the first
program zeroes p` and (incorrectly) sets p`1 to 1. This time, however, also the
other two programs are executed: after resetting once again the value of ri to 0,
program (4) gives a contribution of −1 to p`1 , so that its final value will be zero,
whereas program (5) sets p`2 to 1, indicating the next instruction of M to be
simulated. ut



5 Simulating all-parallel EN P Systems with RAMs

Having proved that all-parallel EN P systems are able to simulate efficiently
random access machines using the same arithmetic operations, we now turn our
attention to the converse simulation. Without loss of generality, we assume that
the all-parallel EN P systems being simulated have a single membrane [6].

Since the production functions of EN P systems may evaluate to negative
numbers, even if the variables themselves are always non-negative, it is conve-
nient to employ RAMs with registers holding values in Z. This poses no restric-
tion, since signed integers may be simulated with a constant-time slowdown by
RAMs using non-negative numbers, for instance by storing them with a sign-
and-modulus representation.

Proposition 7. Let Π be an ENP(+,−) (respectively, an ENP(+,−,×,÷))
working in all-parallel mode and polynomial time t(n) ≤ c1n

k + c0. Then, there
exists a RAM(+,−) (respectively, a RAM(+,−,×,÷)) M computing the same
output as Π in time O

(
t(n)3

)
(respectively, O

(
t(n)

)
).

Proof. Let x1, . . . , xm be the variables of Π. The machine M stores the values
of these variables in registers that we will denote with the same names, and will
have the same values in the initial configuration, including the input variable
of Π. Let p1, . . . , ph be the programs of Π.

Before describing the simulation proper, let us compute the maximum value
of a variable of Π. If Π is an ENP(+,−), then the rules have one of the following
forms:

ai1xi1 ± · · · ± aikxik ± a→ b1|x1 + · · ·+ bm|xm
ai1xi1 ± · · · ± aikxik ± a|e → b1|x1 + · · ·+ bm|xm

for some constants a, ai1 , . . . , aik , b1, . . . , bm ∈ N. The following program, with
some constant a ∈ N, produces the maximum increase in the variable x, which
we assume to be the input variable:

ax→ 1|x (6)

After t = c1n
k + c0 computation steps, the value of x reaches its maximum atx.

(Naturally, a program such as (6) is not admissible in a halting EN P system;
that program is considered here only in order to provide an upper bound to the
value of the variables of Π.)

On the other hand, if Π is an ENP(+,−,×,÷), the program that maximises
the value of x is

xa → 1|x

for some a ∈ N. In this case, after t steps the value of x reaches xa
t

. These
upper bounds to the values of the variables of Π will be used later in order to
determine the time required by M in order to simulate the EN P system.

The following is an overview of the simulation of Π:



repeat
save the current values of the variables
compute the variations due to p1 (if applicable)
...
compute the variations due to ph (if applicable)
compute the new values of the variables

until a final configuration is reached
if Π accepted then

accept
else

reject
end

At the beginning of each simulated step, the current values of the variables are
copied:

x′1 := x1
...
x′m := xm

In the variables ∆1, . . . ,∆m, initially zero, we accumulate the contributions to
x1, . . . , xm given by the programs of Π during the current step:

∆1 := 0
...
∆m := 0

Each program pi of the form f(xi1 , . . . , xik)→ a1|x1 + · · ·+ am|xm is simulated
as follows:

f := f(xi1 , . . . , xik)
x′i1 := 0
...
x′ik := 0

u := f ÷ (a1 + · · ·+ am)
∆1 := ∆1 + a1u
...
∆m := ∆m + amu

First, the value of the production function is computed. This requires O(1) time,
since by construction Π and M admit the same basic arithmetic operations.
Then, the copies of the variables occurring on the left-hand side of the program
are zeroed.



The unit u to be distributed according to the repartition protocol is then com-
puted. Here the division is performed in O(1) time if M is a RAM(+,−,×,÷),
but O

(
(log f)2

)
= O

(
(log(atx))2

)
= O(t2) = O(n2k) if it is a RAM(+,−).

Finally, the contributions to the variables of Π are updated according to the
repartition protocol. This only requires O(1) time, as a1, . . . , am are constants.

Programs pi of the form f(xi1 , . . . , xik)|e → a1|x1+· · ·+am|xm are simulated
analogously, only with an extra test in order to ensure that the value of the
enzyme is larger than the minimum of the variables.

if e > xi1 or e > xi1 or · · · or e > xik then
f := f(xi1 , . . . , xik)
x′i1 := 0
...
x′ik := 0

u := f ÷ (a1 + · · ·+ am)
∆1 := ∆1 + a1u
...
∆m := ∆m + amu

end

The time required is again O(1) if Π is an ENP(+,−,×,÷) and O(n2k) if it is
an ENP(+,−).

After all programs have been examined (and applied, when possible), we
can check whether a final configuration is reached: this occurs when, for each
variable xi, we have xi = x′i+∆i, i.e., when the old value xi equals the (possibly
zeroed) value increased by the sum of the contributions it received in the current
simulated step. If this is not the case, then the values of the variables are updated:

x1 := x′1 +∆1

...
xm := x′m +∆m

and the next step of Π is simulated.
When a final configuration is actually reached, the machine M checks the

value of the accept variable of Π and provides the same result:

if accept = 1 then
accept

else
reject

end

The total time required in order to perform the simulation of Π is O(n3k) for
an ENP(+,−), and O(nk) for an ENP(+,−,×,÷). ut



We can now state our main result, summarising the computational efficiency
of EN P systems using arithmetic operations.

Theorem 2. The following complexity classes coincide:

P-ENP(+,−) = P-RAM(+,−) = P

P-ENP(+,−,×,÷) = P-RAM(+,−,×,÷) = PSPACE

Furthermore, the inclusion P-ENP(+,−,×) ⊆ P-RAM(+,−,×) holds. ut

6 Conclusions

We have analysed the computational efficiency of all-parallel EN P systems
and their relationships with more traditional computing devices such as RAMs
and Turing machines. We have showed some efficient simulations of all-parallel
EN P systems by RAMs and vice versa, when the same basic arithmetic opera-
tions are used.

Hence we found that, by using only addition and subtraction, EN P systems
working in polynomial time and all-parallel mode characterise the complexity
class P, whereas by also allowing multiplication and integer division we obtain
a characterisation of PSPACE.

Establishing the precise efficiency of all-parallel EN P systems (as well as
random access machines) with addition, subtraction and multiplication is still
an open problem. The possibility to extend the results exposed in this paper to
EN P systems working in the sequential or in the one-parallel mode, as well as
to numerical P systems not using the enzyme control, is also open.
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