
Polynomial-delay generation of functional digraphs
up to isomorphism

Antonio E. Porreca1 and Ekaterina Timofeeva2

1 Université Publique
antonio.porreca@lis-lab.fr

2 Aix-Marseille Université, CNRS, LIS, Marseille, France
ekatim239@gmail.com

Abstract. We describe a procedure for the generation of functional digraphs up to isomor-
phism; these are digraphs with uniform outdegree 1, also called mapping patterns, finite
endofunctions, or finite discrete-time dynamical systems. This procedure is based on an
algorithm for the generation of connected functional digraphs, which is then generalised to
arbitrary ones. Both algorithms have an O(n3) delay between consecutive outputs. We also
provide a proof-of-concept implementation of the algorithms.

1 Introduction and motivation

A finite, discrete-time dynamical system (A, f), called in the following just a dynamical system
for brevity, is simply a finite set A of states together with a function f : A → A describing
the evolution of the system in time. A dynamical system can be equivalently described by its
transition digraph, which has V = A as its set of vertices and E = {(a, f(a)) : a ∈ A} as its set
of arcs, that is, each state has an outgoing edge pointing to the next state. Since the dynamical
systems we are dealing with are deterministic, their transition digraphs are all and only the
digraphs having uniform outdegree 1, that is, functional digraphs.

The synchronous execution of two dynamical systems A and B gives a dynamical system A⊗B,
whose transition digraph is the direct product [8] of the transition digraphs of A and B. This
product, together with a disjoint union operation of sum, gives a semiring structure over dynamical
systems up to isomorphism [6] with some interesting algebraic properties, notably the lack of unique
factorisation into irreducible digraphs. In order to develop the theory of the semiring of dynamical
systems, it is useful to be able to find examples and counterexamples to our conjectures, and this
often requires us to be able to efficiently generate all functional digraphs of a given number n
of vertices up to isomorphism. Remark that the number of non-isomorphic functional digraphs
over n vertices (sequence A001372 on the OEIS [13]) is exponential, asymptotically c× dn/

√
n

for some constants c and d > 1 [12]; as a consequence, the kind of efficiency we must look for is
the ability to generate the first output in polynomial time, and the delay between consecutive
outputs must be polynomial as well.

Since the outdegree of each vertex is exactly 1 and the number of vertices is finite, the general
shape of a functional digraph is a disjoint union of connected components, each consisting of a
limit cycle ⟨v1, . . . , vk⟩, where the vertices v1, . . . , vk are the roots of k directed unordered rooted
trees (simply referred to as trees in the following), with the arcs pointing towards the root.

Enumeration and generation problems for some classes of graphs have been analysed in the
literature. For instance, efficient isomorphism-free generation algorithms for rooted, unordered
trees are well known, even requiring only amortised constant time [1], and there exist polynomial
delay algorithms for the isomorphism-free generation of undirected graphs [7]. More general
techniques for the generation of combinatorial objects have been described by McKay [10]. For a

1

practical implementation of generators for several classes of graphs we refer the reader to software
such as nauty and Traces [11].

However, the class of functional digraphs does not seem to have been considered yet from the
point of view of efficient generation algorithms. Here we first propose a O(n3)-delay algorithm for
the generation of connected functional digraphs, based on an isomorphism code (which avoids
generating multiple isomorphic digraphs) and on a novel approach where the successor of the
current digraph is obtained by merging trees having adjacent roots along the limit cycle. This
algorithm is then used as a subroutine in order to generate all, non necessarily connected functional
digraphs with the same O(n3) delay.

2 Isomorphism codes for connected functional digraphs

In order to avoid generating multiple isomorphic functional digraphs, we first define a canonical
representation based on an isomorphism code, which would also allow us to check in polynomial
time whether two given functional digraphs are isomorphic when given by another representation
(e.g., adjacency lists or matrices)3.

Isomorphism codes for unordered rooted trees (which can be taken as directed with the arcs
pointing towards the root, as is needed in our case) are well known in the literature; for instance,
level sequences (sequences node depths given by a preorder traversal of the tree, arranged in
lexicographic order) can be used for this purpose [1]. Here we adopt a solution described by
Valiente [15], which has the additional property that the isomorphism code of a subtree is itself a
valid tree isomorphism code.

Definition 1 (code of a tree). Let T = (V,E) be a tree. Then, the isomorphism code of T is
the sequence of integers

codeT = ⟨|V |⟩⌢ codeT1
⌢ · · ·⌢ codeTk

where T1, . . . , Tk are the immediate subtrees of T , i.e., the subtrees having as roots the predecessors
of the root of T , arranged in lexicographically nondecreasing order of code, and ⌢ denotes sequence
concatenation. In particular, if |V | = 1, i.e., if T only consists of the root, then codeT = ⟨1⟩.

For simplicity, in the rest of the paper, we identify a tree with its own code, i.e., we often
write T instead of codeT . Furthermore, we denote the number of vertices of a tree T with the
symbol |T |.

Since a connected functional digraph consists of a sequence of trees arranged along a cycle,
and all rotations of the sequence are equivalent, we choose a canonical one as its isomorphism
code.

Definition 2 (code of a connected functional digraph). The isomorphism code of a
connected functional digraph C = (V,E) is the lexicographically minimal rotation

codeC = ⟨codeT1, . . . , codeTk⟩

of the sequence of isomorphism codes of its trees taken in order along the cycle, i.e., such that for
all integer r we have

⟨codeT1, . . . , codeTk⟩ ≤ ⟨codeT1+(1+r) mod k, . . . , codeT1+(k+r) mod k⟩.
3 Since functional digraphs are planar, they can actually be checked for isomorphism in linear time [4] or
in logarithmic space [5].

2

For brevity, we refer to connected functional digraphs as components and, as with trees, we
identify a component C with its own code. A valid code for a component C is also called a
canonical form of C; unless otherwise specified, in the rest of the paper we consider all components
to be in canonical form. By |C| we denote the number of vertices of component C.

Isomorphism codes for arbitrary (i.e., non necessarily connected) functional digraphs will be
defined later, in Section 4.

3 Generation of connected functional digraphs

The enumeration of connected functional digraphs is based on the following tree merging operation,
to be applied to at least two trees (with the first being trivial, i.e., only having a root node)
adjacent along the cycle.

Definition 3 (tree merging). Let ⟨T1, T2, . . . , Tk⟩ be a sequence of trees such that T1 is trivial.
Then merge ⟨T1, T2, . . . , Tk⟩ is the tree obtained by connecting T2, . . . , Tk as immediate subtrees
of T1.

This operation could, in principle, be applied even if T1 has more than one node, by
adding T2, . . . , Tk as immediate subtrees to the root of T1; however, as will be proved later,
this is not needed for our purposes.

The following is an immediate consequence of the definition of the merging operation:

Proposition 4. Let ⟨T1, T2, . . . , Tk⟩ be a lexicographically nondecreasing sequence of trees with T1

trivial. Then

merge ⟨T1, T2, . . . , Tk⟩ =
〈∑k

i=1 |Ti|
〉
⌢T2

⌢ · · ·⌢Tk.

Notice that, even when starting from a valid component code and even when applying it to
a lexicographically nondecreasing sequence of trees, this tree merging operation might produce
invalid codes.

Example 5. Consider the following component:

⟨T1, T2, T3⟩ = ⟨⟨1⟩, ⟨1⟩, ⟨1⟩⟩.

By merging T1 and T2 we obtain

⟨merge ⟨T1, T2⟩, T3⟩ = ⟨⟨2, 1⟩, ⟨1⟩⟩

which is not a valid code, since the rotation ⟨⟨1⟩, ⟨2, 1⟩⟩ is strictly inferior in lexicographic order.

It is thus necessary to check whether a code obtained by merging a nondecreasing sequence of
adjacent trees of a component is indeed a valid code.

We can also define an inverse unmerging operation on trees.

Definition 6 (tree unmerging). Given a tree T , we say that

unmergeT = ⟨T1, . . . , Tk⟩

if and only if merge ⟨T1, . . . , Tk⟩ = T .

3

Notice that there is only one way to unmerge a tree, i.e., detaching its immediate subtrees
and putting them in a sequence after the trivial tree (i.e., the former root), and thus unmerge is
indeed a well-defined function.

We can prove that unmerging trees in a component in canonical form in a left-to-right fashion
always gives another canonical form.

Lemma 7. Let C = ⟨T1, . . . , Tk⟩ be a component in canonical form, and let Th be the leftmost
nontrivial tree of C. Then

C ′ = ⟨T1, . . . , Th−1⟩⌢ unmergeTh
⌢⟨Th+1, . . . , Tk⟩

is also a canonical form, i.e., it is the minimum of its own rotations, and contains strictly more trees
than C. We call the resulting component C ′ the component-unmerge of C, in symbols c-unmergeC.

Proof. By hypothesis, C begins with a sequence ⟨T1 . . . , Th−1⟩ of trivial trees of length h− 1. The
unmerging of Th has the form

unmergeTh = ⟨S1, . . . , Sℓ⟩

where S1 is trivial. As a consequence, C ′ begins with a maximal sequence X of trivial trees of
length at least h: the original ones ⟨T1, . . . , Th−1⟩, together with S1, obtained by detaching the
root of Th, and possibly other trivial trees following S1.

A rotation of C ′ that is strictly inferior to C ′ would have to have another sequence Y of trivial
trees with |Y | ≥ |X| and Y separated from X, i.e., with at least one intervening nontrivial tree.
Such sequence Y did not already exist in C, because otherwise the rotation of C starting with Y
would be strictly less than C, contradicting the hypothesis that C is a minimal rotation.

As a consequence, the supposed sequence Y of trivial trees would have to be generated by the
unmerging of Th. But all trivial trees in unmergeTh occur at the beginning of the sequence, since
the subtrees of a tree are always sorted lexicographically, and are thus adjacent to the trivial
trees ⟨T1 . . . , Th−1, S1⟩. As a consequence, C ′ is the minimal rotation and thus a canonical form.

Since the unmerging of any nontrivial tree produces at least two trees, the digraph C ′ has
strictly more trees than C, which completes the proof.

We can now define the set of merges of a given component.

Definition 8. Let C = ⟨T1, . . . , Tk⟩ be a component and let

Cℓ,r = ⟨T1, . . . , Tℓ−1,merge ⟨Tℓ, . . . , Tr⟩, Tr+1, . . . , Tk⟩

for 1 ≤ ℓ < r ≤ k. Then, we denote the set of possible merges of C by

mergesC =

Cℓ,r

∣∣∣∣∣∣
1 ≤ ℓ < r ≤ k, tree Tℓ is trivial,

⟨Tℓ, . . . , Tr⟩ is lexicographically nondecreasing,
Cℓ,r is in canonical form, and c-unmergeCℓ,r = C

 .

Notice that, since c-unmerge is a function, for distinct components C1 and C2 we always
have mergesC1 ∩mergesC2 = ∅.

Example 9. If we did not require c-unmergeCℓ,r = C in Definition 8, the sets of merges of two
distinct components would not be necessarily disjoint; for instance, both ⟨⟨1⟩, ⟨1⟩, ⟨1⟩, ⟨3, 2, 1⟩⟩
and ⟨⟨1⟩, ⟨2, 1⟩, ⟨1⟩, ⟨2, 1⟩⟩ would share an element:

⟨⟨1⟩, ⟨2, 1⟩, ⟨3, 2, 1⟩⟩ = ⟨⟨1⟩,merge ⟨⟨1⟩, ⟨1⟩⟩, ⟨3, 2, 1⟩⟩
= ⟨⟨1⟩, ⟨2, 1⟩,merge ⟨⟨1⟩, ⟨2, 1⟩⟩⟩.

4

3.1 Algorithm for the generation of connected functional digraphs

We can now describe an algorithm generating all components over n vertices by exploiting the
notion of merging adjacent trees along the limit cycle.

Algorithm 1 (successor of a component). On input C = ⟨T1, . . . , Tk⟩ with |C| = n vertices:

1.1 If mergesC ̸= ∅, then return min(mergesC). Otherwise go to step 1.2.
1.2 If all trees of C are trivial, then go to step 1.3. Otherwise let U = c-unmergeC and, if

the set {M ∈ mergesU : M > C} is nonempty, then return the minimum of such set.
Otherwise, set C := U and repeat step 1.2.

1.3 Return ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n + 1 times

, the first component over n+ 1 vertices.

Let us show the execution of Algorithm 1 on an example.

Example 10. Let us compute all 9 components over n = 4 vertices. We begin with the cycle of
length n:

C1 = ⟨⟨1⟩, ⟨1⟩, ⟨1⟩, ⟨1⟩⟩

The set of merges of C1 is

mergesC1 =
{
⟨⟨4, 1, 1, 1⟩⟩, ⟨⟨1⟩, ⟨3, 1, 1⟩⟩, ⟨⟨1⟩, ⟨1⟩, ⟨2, 1⟩⟩

}
,

The sequences ⟨⟨2, 1⟩, ⟨1⟩, ⟨1⟩⟩, ⟨⟨3, 1, 1⟩, ⟨1⟩⟩, and ⟨⟨1⟩, ⟨2, 1⟩, ⟨1⟩⟩, while obtained by merging
adjacent trees of C1, are not valid codes of components, since they are not in canonical form (i.e,
they are not their own minimal rotation).

In order to compute the next component, we take the lexicographically minimal C2 ∈ mergesC1,
namely

C2 = ⟨⟨1⟩, ⟨1⟩, ⟨2, 1⟩⟩

We repeat this procedure twice, taking the minimum C3 of mergesC2 and C4 of mergesC3:

C3 = ⟨⟨1⟩, ⟨3, 2, 1⟩⟩

C4 = ⟨⟨4, 3, 2, 1⟩⟩

We can not repeat these steps any further, since mergesC4 = ∅. Therefore, we compute
C3 = c-unmergeC4 and try to obtain the lexicographically minimal C5 such that C5 ∈ mergesC3

and C5 > C4. Such C5 does not exist, since C4 is the only element in mergesC3, therefore we
repeat the same process with C2 = c-unmergeC3. We try to obtain the lexicographically minimal
C5, such that C5 ∈ mergesC2 and C5 > C3. Indeed, such C5 exists:

C5 = ⟨⟨2, 1⟩, ⟨2, 1⟩⟩

Since mergesC5 = ∅, we try to obtain the lexicographically minimal component C6 such that
C6 ∈ merges (c-unmergeC5) = mergesC2 and C6 > C5. We obtain:

C6 = ⟨⟨4, 1, 2, 1⟩⟩

5

We have mergesC6 = ∅ and there does not exist C7 such that C7 > C6 and C7 ∈ mergesC2.
Then, we look for C7 as the next component such that C7 ∈ merges (c-unmergeC2) = mergesC1

and C7 > C2. Such C7 exists:

C7 = ⟨⟨1⟩, ⟨3, 1, 1⟩⟩

We compute the minimal of its merges:

C8 = ⟨⟨4, 3, 1, 1⟩⟩

Since C8 is the only element of mergesC7, we compute C9 ∈ merges (c-unmergeC7) = mergesC1

and C9 > C7. Such C9 exists:

C9 = ⟨⟨4, 1, 1, 1⟩⟩

Here the generation for n = 4 vertices halts, since mergesC9 = ∅ and C9 is the lexicographic
maximum of mergesC1.

3.2 Proof of correctness

In this section we prove the correctness of Algorithm 1.

Lemma 11. For each n we have

max(merges ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n times

) = ⟨⟨n, 1, . . . , 1︸ ︷︷ ︸
n − 1 times

⟩⟩.

Proof. For n = 1 we have merges ⟨⟨1⟩⟩ = ∅ , i.e, there are no possible merges. For n > 1

merges ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n times

=



⟨⟨1⟩, . . . , ⟨1⟩︸ ︷︷ ︸
n − 2 times

, ⟨2, 1⟩⟩, ⟨⟨1⟩, . . . , ⟨1⟩︸ ︷︷ ︸
n − 3 times

, ⟨3, 1, 1⟩⟩,

. . . ,

⟨⟨1⟩, ⟨n− 1, 1, . . . , 1︸ ︷︷ ︸
n − 2 times

⟩⟩, ⟨⟨n, 1, . . . , 1︸ ︷︷ ︸
n − 1 times

⟩⟩


All the other tree merges do not give valid codes, since they are not lexicographically minimal
rotations. Indeed, the largest element in lexicographical order in this set is the only one that
starts with n and not ⟨1⟩.

Lemma 12. Let C be a component generated by Algorithm 1. Then, all components in mergesC
are also generated by Algorithm 1.

Proof. By induction, we prove that if the statement is true for components C having less than k
trees (hypothesis 1), then it is true for components having k trees.

Suppose that C has k trees. If mergesC is empty, there is nothing to prove; suppose then
that mergesC = {C1, . . . , Cm} in increasing lexicographic order. Then, on input C Algorithm 1
outputs min(mergesC) = C1 in step 1.1. Let us prove that, assuming that Ci has been generated
(hypothesis 2), then Ci+1 is also generated.

6

Let D0 = Ci and let Dj+1 = max(mergesDj) for all j such that mergesDj ̸= ∅. Let D be
the unique Dj with mergesDj = ∅. Then D0 = Ci is generated by hypothesis 2, and each Dj+1

by hypothesis 1, since all the merges of a component Dj have strictly less trees than Dj itself (by
Lemma 7 and Definition 8), and D0 = Ci has strictly less than k trees, since Ci ∈ mergesC. In
particular D is generated.

It only remains to show that Algorithm 1 outputs Ci+1 on input D. This is indeed the case in
step 1.2, since each Dj+1 is max(mergesDj) and thus {M ∈ mergesDj : M > Dj+1} = ∅. The
only Dj for which this set is not empty is D0 = Ci, and min{M ∈ mergesC : M > Ci} = Ci+1

by our hypothesis on the lexicographic ordering of mergesC.
By induction, all elements of mergesC are then generated, which proves the statement for

components C of k trees; once again by induction, this shows that the statement holds for all k
and concludes the proof.

Lemma 13. Suppose that cycle ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n times

is generated by Algorithm 1, and let C = ⟨T1, . . . , Tk⟩

be a component with |C| = n and k < n trees. Then C is also generated by Algorithm 1.

Proof. By reverse induction on k. Since k < n, component C has at least one nontrivial tree,
and thus C ′ = c-unmergeC exists. We still have |C ′| = n and its number of trees k′ is strictly
larger than k. Then C ′ is generated, either because k′ = n (and thus C ′ = ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸

n times

), or

because k′ < n and thus the induction hypothesis applies. But then C is also generated by
Lemma 12, since C ∈ mergesC ′.

Theorem 14. If Algorithm 1 is applied repeatedly, zero or more times, starting from ⟨⟨1⟩⟩, then
all components are generated in increasing order of number of vertices.

In particular, by repeatedly applying Algorithm 1 starting from the component C = ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n times

,

i.e., the cycle of length n, and stopping before reaching ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n + 1 times

, then we obtain all components

over n vertices.

Proof. It suffices to prove that all cycles ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n times

are generated, and the result will then

follow from Lemma 13. We prove that by induction on n. The cycle ⟨⟨1⟩⟩ is the initial component,
and thus it is generated even before applying Algorithm 1.

Let n > 1 and C = ⟨⟨n − 1, 1, . . . , 1︸ ︷︷ ︸
n − 2 times

⟩⟩. Then |C| = n − 1; by induction hypothesis the

cycle ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n − 1 times

is generated, and thus C is also generated by Lemma 13. On input C,

Algorithm 1 behaves as follows. No merge of C at all can be performed in step 1.1, since
there is only one tree. The algorithm in step 1.2 unmerges this tree, giving U = ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸

n − 1 times

.

Since C = max(mergesU) by Lemma 11, the algorithm sets C := U and repeats step 1.2. Since
all trees are now trivial, the algorithm returns ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸

n times

in step 1.3.

In order to show that all components over n vertices are obtained by repeated application of
Algorithm 1 starting from ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸

n times

, it suffices to notice that all components over n vertices

7

are generated after all components over n−1 vertices (if any) and before all components over n+1
vertices. Indeed, in steps 1.1 and 1.2 the number of vertices never changes, since the only operations
are tree merging and unmerging; the only operation increasing the number of vertices happens in
step 1.3, when we start generating larger components.

The following lemma shows that the maximum number of iterations of step 1.2 is actually
independent of the size of the component.

Lemma 15. On input a component C = ⟨T1, . . . , Tk⟩ such that mergesC = ∅, its successor is
obtained by executing step 1.2 of Algorithm 1 at most twice.

Proof. Since mergesC = ∅, trees T1, . . . , Tk are nontrivial, therefore the successor of C is
obtained either in step 1.2 or in step 1.3. We first compute U = c-unmergeC = ⟨⟨1⟩, T ′

2, . . . , T
′
k′⟩

by unmerging the leftmost nontrivial tree T1 of C, which gives a trivial tree in the first position.
If all other trees of U are also trivial, then the successor is returned in step 1.3.

Otherwise, if the set {M ∈ mergesU : M > C} is nonempty, then we return its minimum,
and the successor of C is thus obtained by executing step 1.2 of Algorithm 1 only once.

Otherwise, we set C := U = ⟨⟨1⟩, T ′
2, . . . , T

′
k′⟩ and repeat step 1.2 a second time. Now, by

unmerging the leftmost nontrivial tree of C we recompute U = ⟨⟨1⟩, ⟨1⟩, T ′′
3 , . . . , T

′′
k′′⟩, which

begins with at least two trivial trees (the second trivial tree is either T ′
2, or obtained by unmerging

it). Then, there exists at least one component M obtained from U by merging adjacent trees,
namely M = ⟨T ⟩ with T = merge ⟨⟨1⟩, ⟨1⟩, T ′′

3 , . . . , T
′′
k′′⟩; furthermore, we have M > C since C

begins with a trivial tree and M with a nontrivial one. Then we return M as the output of
Algorithm 1.

We still need to prove that no component is generated multiple times by Algorithm 1.

Lemma 16. Algorithm 1 never outputs the same cycle C = ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n times

twice.

Proof. The component C = ⟨⟨1⟩⟩ is never output by Algorithm 1, since it is not the merge of any
component (and thus it is not generated in step 1.1 or 1.2) and it is too small to be generated in
step 1.3.

All cycles of length n > 1 are generated in step 1.3 from a smaller component: they can not be
a result of merges in steps 1.1 or 1.2, since all their trees are trivial. The component C = ⟨⟨1⟩, ⟨1⟩⟩
is thus generated in step 1.3 from a component of size 1. But there is only one such component,
namely ⟨⟨1⟩⟩⟨⟨1⟩⟩.

Now let n ≥ 2 and suppose that the cycle C = ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n + 1 times

is generated by Algorithm 1 in

step 1.3 from an input A. Then mergesA = ∅ (otherwise C would be output in step 1.1), and
thus A cannot be a cycle, i.e., it has a nontrivial tree. Hence, Algorithm 1 does not immediately
skip step 1.2. Then it must be the case that A = max(merges(c-unmergeA)), since C is not
output in this step.

If step 1.2 is only executed once, then c-unmergeA only has trivial trees, that is, c-unmergeA
is the cycle ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸

n times

, and then A = ⟨⟨n, 1, . . . , 1︸ ︷︷ ︸
n − 1 times

⟩⟩ by Lemma 11.

If step 1.2 were executed exactly twice, that would imply that c-unmergeA has nontriv-
ial trees, that c-unmergeA = max(merges(c-unmerge(c-unmergeA))), otherwise the algorithm
would halt in step 1.2, and that c-unmerge(c-unmergeA) only has trivial trees, that is, it is
the cycle ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸

n times

. Since c-unmergeA = max(merges(⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸
n times

)), then by Lemma 11

8

c-unmergeA = ⟨⟨n, 1, . . . , 1︸ ︷︷ ︸
n − 1 times

⟩⟩. But then merges(c-unmergeA) = ∅, which is impossible because

at least A ∈ merges(c-unmergeA).
Step 1.2 is never executed more than twice by Lemma 15, which implies that there is only

one input A for Algorithm 1 giving output C.

Lemma 17. Let C be a component with at least one nontrivial tree. Then, it is impossible for
Algorithm 1 to generate C twice, once in step 1.1 and once in step 1.2.

Proof. By contradiction, suppose that C is generated on input A in step 1.1. Then we have
C = min(mergesA), and thus in particular C ∈ mergesA.

Suppose that C is also generated on input B in step 1.2. Then C ∈ merges(c-unmergeD)
for some D, but C > D in lexicographic order. Since D ∈ merges(c-unmergeD), we have
C ̸= min(merges(c-unmergeD)).

Since the sets of merges of distinct components are disjoint, necessarily A = c-unmergeD.
But then C is simultaneously the minimum and not the minimum of mergesA, which is a
contradiction.

Lemma 18. Let C be a component with at least one nontrivial tree. Then, it is impossible for
Algorithm 1 to generate C twice in step 1.1.

Proof. Suppose that C is generated from both inputsA andB in step 1.1. Then C = min(mergesA)
and C = min(mergesB). But then C ∈ mergesA ∩mergesB, which implies A = B.

Lemma 19. Let C be a component with at least one nontrivial tree. Then, it is impossible for
Algorithm 1 to generate C twice in step 1.2.

Proof. By Lemma 15, the output C is generated either after one iteration of step 1.2, or after
two.

If C is generated from an input A after only one iteration, then

C = min{M ∈ mergesU : M > A}

with U = c-unmergeA. Since C ∈ mergesU , we also have U = c-unmergeC, thus

C = min{M ∈ merges(c-unmergeC) : M > A}

which implies

A = max{M ∈ merges(c-unmergeC) : M < C}

which proves that A only depends on C and is thus unique.
On the other hand, if C is generated from A after two iterations, then

C = min{M ∈ mergesU : M > c-unmergeA}

with U = c-unmerge(c-unmergeA). Since C ∈ mergesU , we also have U = c-unmergeC, thus

C = min{M ∈ merges(c-unmergeC) : M > c-unmergeA}

which implies

c-unmergeA = max{M ∈ merges(c-unmergeC) : M < C}.

9

Furthermore, we have A = max(merges(c-unmergeA)), otherwise there would exist a compo-
nent M ∈ merges(c-unmergeA) with M > A, and Algorithm 1 would halt after only one iteration
of step 1.2, a contradiction.

As a consequence, we have

A = max(merges(max{M ∈ merges(c-unmergeC) : M < C}))

which only depends on C and is thus unique.

From Lemmas 16, 17, 18, and 19 we can finally prove that no duplicates whatsoever are
generated.

Theorem 20. Algorithm 1 never generates the same component multiple times (i.e., it computes
an injective function).

3.3 Complexity analysis

We can now prove that the proposed generation procedure has an O(n3) delay between outputs.

Lemma 21. Given a sequence of trees ⟨T1, . . . , Tk⟩ with n = |T1|+ · · ·+ |Tk| total vertices, it is
possible to check in O(n) time if the sequence is its own minimal rotation, and thus the valid code
of a component.

Proof. Let P = ⟨0⟩⌢T1
⌢⟨0⟩⌢T2

⌢ · · ·⌢⟨0⟩⌢Tk be the concatenation of the codes of the given
trees, each prefixed with an extra ⟨0⟩; remark that 0 is strictly less than any integer appearing
in the code of a tree. Let P ′ be the minimal rotation of P ; then P ′ must begin with 0, since it
is the minimum element of the sequence, and thus P ′ = ⟨0⟩⌢U1

⌢⟨0⟩⌢U2
⌢ · · ·⌢⟨0⟩⌢Uk, where

each Ui is one of the original trees Tj and ⟨U1, . . . , Uk⟩ is a rotation of ⟨T1, . . . , Tk⟩.
We claim that ⟨U1, . . . , Uk⟩ is, more specifically, theminimal rotation of ⟨T1, . . . , Tk⟩. Otherwise,

by contradiction, there would exist another rotation ⟨V1, . . . , Vk⟩ < ⟨U1, . . . , Uk⟩. Let Vi and Ui

be the leftmost trees such that Vi ̸= Ui. Then

⟨0⟩⌢V1
⌢ · · ·⌢⟨0⟩︸ ︷︷ ︸
V

⌢Vi
⌢ · · ·⌢⟨0⟩⌢Vk < ⟨0⟩⌢U1

⌢ · · ·⌢⟨0⟩︸ ︷︷ ︸
U

⌢Ui
⌢ · · ·⌢⟨0⟩⌢Uk = P ′

since the two prefixes U and V are identical and Vi < Ui. But this contradicts the assumption
that P ′ is the minimal rotation of P .

Then P is its own minimal rotation if and only if ⟨T1, . . . , Tk⟩ is a minimal rotation. Since P is a
sequence of integers, the former property can be checked in linear time by using a lexicographically
minimal rotation algorithm, such as Booth’s [2,3].

Theorem 22. Algorithm 1 takes O(n3) time, which is thus the delay for the generation of the
successor of any components over n vertices.

Proof. Let C = ⟨T1, . . . , Tk⟩ the input component.

– If the successor of C generated by Algorithm 1 is obtained in step 1.1, then:
• Generation of mergesC takes O(n3) operations, since we go through all ℓ and r such
that 1 ≤ ℓ < r ≤ k, where k = n in the worst case, which takes O(n2) operations. For
each ℓ and r we check if Tℓ is trivial (O(1) operations), if ⟨Tℓ, . . . , Tr⟩ is lexicographically
nondecreasing (O(n) operations), if Cℓ,r is in canonical form, which takes O(n) operations
by Lemma 21, and if c-unmergeCℓ,r = C, which takes O(n) operations. Therefore, overall
this generation takes O(n · n2) = O(n3) operations, since mergesC has O(n2) elements
(k ≤ n in Definition 8).

10

• In the end, we choose min(mergesC), which takes O(n3) operations.
Therefore, the successor of C obtained in step 1.1 is obtained with a O(n3) delay.

– If the successor of C generated by Algorithm 1 is obtained in step 1.2, then:
• Computing U = c-unmergeC takes O(n) operations.
• Then, the generation of mergesU takes O(n3) operations, as previously discussed.
• Then, for each element M of mergesU we have to check if M > C, which takes O(n)
operations. Therefore, overall this verification takes O(n · n2) = O(n3) operations, since
mergesU has O(n2) elements.

• In the end, we choose the minimum M among the components remaining from the
previous steps, if any exist, which takes O(n3) operations.

• If such M does not exist, we set C := U and repeat step 1.2.
By Lemma 15 step 1.2 is executed at most twice. Therefore, the successor of C obtained in
step 1.1 is obtained with a O(n3) delay, which includes the operations of step 1.1.

– If the successor of C generated by Algorithm 1 is obtained in step 1.3, then the delay is O(n3)
due to the execution of steps 1.1 and 1.2, since we simply need to create ⟨⟨1⟩, . . . , ⟨1⟩⟩︸ ︷︷ ︸

n + 1 times

, the

first component over n+ 1 vertices, which takes O(n) extra time.

4 Generation of arbitrary functional digraphs

We can now exploit Algorithm 1 as a subroutine in order to devise an efficient algorithm for
the generation of arbitrary (non necessarily connected) functional digraphs. More precisely, like
Algorithm 1, we will be able to compute the successor of a given functional digraph under some
ordering. As a subroutine, we exploit an algorithm for generating partitions of an integer n [9].

An arbitrary functional digraph can be represented by a sequence of its connected components.
Since there is no intrinsic order among components, any permutation of the sequence would
represent the same functional digraph; as a consequence, once again we choose a canonical
permutation.

Definition 23 (code of a functional digraph). Let G = (V,E) be an arbitrary functional
digraph having m connected components C1, . . . , Cm. Then, the isomorphism code of G is the
sequence

codeG = ⟨codeC1, . . . , codeCm⟩.

where the connected components C1, . . . , Cm are in nondecreasing order of generation by means
of Algorithm 1.

As usual, we identify a functional digraph G with its own code and refer to it as a canonical
form for G, and we denote its number of vertices by |G|.

Notice how the isomorphism code for a functional digraph resembles a PQ-tree, a data
structure representing permutations of a given set of elements which, incidentally, is used to
efficiently check isomorphic graphs of certain classes [4]. However, for our application we need
to represent the equivalence of all permutations of the components C1, . . . , Cm, as well as the
equivalence of all rotations of the trees T1, . . . , Tk of a component Ci, and this latter condition is
not represented directly in a PQ-tree.

For the generation of arbitrary functional digraphs, we modify the partition generation
algorithm by Kelleher and O’Sullivan [9] in such a way that, if no further partition of n exists,
then the lexicographically minimum partition of n+ 1 is output.

11

Proposition 24 (Kelleher, O’Sullivan [9]). There exists an algorithm that takes as input a
partition of an integer n, represented by a sequence of nondecreasing integers, and returns the
next partition of n in lexicographic order (if there exists a next partition).

Algorithm 2 (successor of an integer partition). On input a partition P of the integer n, return
the next partition of n in lexicographic order, if any; if P was the last partition of n, then return
the first partition of n+ 1 in lexicographic order, i.e., (1, 1, . . . , 1)︸ ︷︷ ︸

n+1 times

.

This allows us to formalise the generation of arbitrary functional digraphs.

Algorithm 3 (successor of an arbitrary functional digraph). On input G = ⟨C1, . . . , Cm⟩, a
functional digraph over n vertices having components C1, . . . , Cm:

3.1 If there exists a component such that its successor given by Algorithm 1 has the same size,
then let Ch be the rightmost such component, and return

⟨C1, . . . , Ch−1, C
′
h, C

′
h+1, . . . , C

′
m⟩

where C ′
h is the aforementioned successor of Ch and, for all i > h, the component C ′

i is a
copy of C ′

h if |Ci| = |C ′
h|; otherwise |Ci| > |C ′

h|, and then we let Ci be the first component
over |Ci| vertices, i.e., the cycle of length |Ci|.

3.2 If no such component exists, let P = (|C1|, . . . , |Cm|) the partition of the integer n corre-
sponding to the sizes of the components of G, and let Q = (q1, . . . , qm′) be the next partition
according to Algorithm 2, then return ⟨C ′

1, . . . , C
′
m′⟩, where each C ′

i is the first component
over qi vertices, i.e., the cycle of length qi.

As an example, let us compute all 19 functional digraphs over 4 vertices.

Example 25. We begin with n = 4 self loops:

G1 = ⟨⟨⟨1⟩⟩, ⟨⟨1⟩⟩, ⟨⟨1⟩⟩, ⟨⟨1⟩⟩⟩

In order to compute the next functional digraph, we try finding a component such that its
successor given by Algorithm 1 has the same size. G1 does not have such a component, since all
the components are self loops, thus its successor G2 is obtained by computing the successor of its
partition via Algorithm 2. Let P1 = (1, 1, 1, 1) be the partition of G1, then the partition of G2

is P2 = (p1, p2, p3) = (1, 1, 2). Each component Ci of G2 is the first component over pi vertices,
i.e., the cycle of length pi, thus

G2 = ⟨⟨⟨1⟩⟩, ⟨⟨1⟩⟩, ⟨⟨1⟩, ⟨1⟩⟩⟩

Since ⟨⟨1⟩, ⟨1⟩⟩ has a successor of the same size according to the Algorithm 1, the next generated
digraph is

G3 = ⟨⟨⟨1⟩⟩, ⟨⟨1⟩⟩, ⟨⟨2, 1⟩⟩⟩

There is no component of G3 such that its successor given by Algorithm 1 has the same size, thus
its successor G4 must be obtained with the next partition P3 = (1, 3) where each component is
the first generated component over corresponding number of vertices:

G4 = ⟨⟨⟨1⟩⟩, ⟨⟨1⟩, ⟨1⟩, ⟨1⟩⟩⟩

12

Since ⟨⟨1⟩, ⟨1⟩, ⟨1⟩⟩ has a successor of the same size according to the Algorithm 1, the next
generated digraph is

G5 = ⟨⟨⟨1⟩⟩, ⟨⟨1⟩, ⟨2, 1⟩⟩⟩

As before, by taking a component with the successor of the same size twice we obtain two following
digraphs:

G6 = ⟨⟨⟨1⟩⟩, ⟨⟨3, 2, 1⟩⟩⟩

G7 = ⟨⟨⟨1⟩⟩, ⟨⟨3, 1, 1⟩⟩⟩

There is no component of G7 such that its successor given by Algorithm 1 has the same size, thus
its successor G8 must be obtained with the next partition P4 = (2, 2) where each component is
the first generated component over corresponding number of vertices:

G8 = ⟨⟨⟨1⟩, ⟨1⟩⟩, ⟨⟨1⟩, ⟨1⟩⟩⟩

We take the rightmost component of G8 that has a successor of the same size and we obtain the
next generated digraph:

G9 = ⟨⟨⟨1⟩, ⟨1⟩⟩, ⟨⟨2, 1⟩⟩⟩

By repeating the same step but putting a copy of the first component so that the obtained digraph
is in canonical form, we generate

G10 = ⟨⟨⟨2, 1⟩⟩, ⟨⟨2, 1⟩⟩⟩

There exists no component of G10 such that its successor has the same size, therefore we move to
the next partition P5 = (4) and we return the digraph with the first component over 4 vertices,
i.e., the cycle of length 4.

G11 = ⟨⟨⟨1⟩, ⟨1⟩, ⟨1⟩, ⟨1⟩⟩⟩

By repeatedly taking the successor of the only component ⟨⟨1⟩, ⟨1⟩, ⟨1⟩, ⟨1⟩⟩ we obtain all remaining
functional digraphs over 4 vertices, namely:

G12 = ⟨⟨⟨1⟩, ⟨1⟩, ⟨2, 1⟩⟩⟩

G13 = ⟨⟨⟨1⟩, ⟨3, 2, 1⟩⟩⟩

G14 = ⟨⟨⟨4, 3, 2, 1⟩⟩⟩

G15 = ⟨⟨⟨2, 1⟩, ⟨2, 1⟩⟩⟩

G16 = ⟨⟨⟨4, 1, 2, 1⟩⟩⟩

G17 = ⟨⟨⟨1⟩, ⟨3, 1, 1⟩⟩⟩

G18 = ⟨⟨⟨4, 3, 1, 1⟩⟩⟩

G19 = ⟨⟨⟨4, 1, 1, 1⟩⟩⟩

13

Here the generation for n = 4 vertices halts, since the successor of ⟨⟨4, 1, 1, 1⟩⟩ has more than 4
vertices, and there is no further partition of size 4.

4.1 Proof of correctness

In order to prove the correctness of Algorithm 3, it is useful to first formalise the enumeration
ordering it provides.

Definition 26. Given two functional digraphs G1 = ⟨C1, . . . , Cm⟩ and G2 = ⟨C ′
1, . . . , C

′
m′⟩, their

order is defined as follows. Let P1 = (|C1|, . . . , |Cm|) and P2 = (|C ′
1|, . . . , |C ′

m|) be the partitions
of |G1| and |G2| corresponding to the two digraphs.

– If P1 precedes P2 (resp., P2 precedes P1) by order of generation by Algorithm 2, then G1

precedes G2 (resp., G2 precedes G1).

– If P1 = P2, then G1 precedes G2 (resp., G2 precedes G1) if it precedes it in the lexicographic
order induced by the ordering of components given by Algorithm 1.

Lemma 27. The order given by Definition 26 is a well-order on the set of functional digraphs.

Proof. The order is total since, given functional digraphs G1 and G2, either they have different
partitions, and thus are comparable according to the order of generation by Algorithm 2, or they
have the same partition, and then they are comparable by the lexicographic order induced by
Algorithm 1, which is total by Theorems 14 and 20.

This is a well-order since, given a set S of functional digraphs, we can take the subset containing
all digraphs having the minimal partition according to Algorithm 2 (this is also a well-order) and
compare them by the lexicographic order induced by Algorithm 1 (another well-order) in order to
find the minimum of S.

Lemma 28. On input a functional digraph G = ⟨C1, . . . , Cm⟩ in canonical form, the output of
Algorithm 3 is also in canonical form.

Proof. Let G′ be the output of Algorithm 3 on input G.

– If G′ is obtained in step 3.1, then it has the form

G′ = ⟨C1, . . . , Ch−1, C
′
h, C

′
h+1, . . . , C

′
m⟩.

The prefix ⟨C1, . . . , Ch−1⟩ shared withG is nondecreasing sinceG is in canonical form. Since C ′
h

is the successor of Ch, this holds also for the prefix ⟨C1, . . . , Ch−1, C
′
h⟩. Immediately after we

have zero or more copies of C ′
h, followed by a suffix consisting of larger minimal components

(i.e., cycles) of nondecreasing sizes (since the partitions are nondecreasing sequences of
integers), and this keeps the sequence in nondecreasing order of generation by Algorithm 1.

– If G′ is generated in step 3.2, then it consists of cycles of nondecreasing length, which is a
canonical form.

Lemma 29. On input a functional digraph, Algorithm 3 outputs its immediate successor in the
order of Definition 26.

Proof. Let G = ⟨C1, . . . , Cm⟩ be a functional digraph.

14

– If by applying Algorithm 3 on G we obtain its successor G′ in step 3.1, then it has the form

G′ = ⟨C1, . . . , Ch−1, C
′
h, C

′
h+1, . . . , C

′
m⟩

and it follows G in the order of Definition 26 because the two digraphs share the same
partition and G′ is larger by lexicographic order, since the two digraphs share the same
prefix ⟨C1, . . . , Ch−1⟩ and C ′

h is the successor of Ch in the order given by Algorithm 1.
Suppose that the functional digraph H follows G and precedes G′ according to the order
of Definition 26; then it also shares the same prefix ⟨C1, . . . , Ch−1⟩; since no component is
strictly between Ch and C ′

h, the next component of H is one of the two. If it is Ch, then G
and H share the prefix ⟨C1, . . . , Ch⟩, and since each component of the suffix ⟨Ch+1, . . . , Cm⟩
of G is maximal among the components of the same size (otherwise Ch would not be the
rightmost component with a successor of the same size), then H must share the same suffix,
and thus H = G. If, on the other hand, the h-th component of H is C ′

h, then it shares a
prefix ⟨C1, . . . , Ch−1, C

′
h⟩ with G′. Since each component ⟨C ′

h+1, . . . , C
′
m⟩ of the suffix of G′ is

minimal among the components of the same size, then H must share the same suffix, and thus
be identical to G′. This shows that there exists no functional digraph H strictly between G
and G′, i.e., G′ is the immediate successor of G in the order of Definition 26.

– If G′ is obtained in step 3.2, then its partition P ′ immediately follows the partition P of G in
the order given by Algorithm 2, thus G′ follows G in the order of Definition 26. There is no
digraph H strictly between G and G′ since G is the last digraph having partition P , and G′

is the first having partition P ′.

Theorem 30. All functional digraphs are obtained, in nondecreasing order by number of vertices,
by applying Algorithm 3 zero or more times to the empty digraph. Algorithm 3 never generates
two isomorphic functional digraphs (i.e., it computes an injective function).

Proof. Since the order of Definition 26 is a well-order, and thus in particular a total order, by
Lemma 27, and since Algorithm 3 outputs immediate successors by Lemma 29 according to that
order, each functional digraph is reachable by consecutive applications of Algorithm 3. Once again
by totality of the order and by Lemma 29, distinct inputs will produce distinct outputs, and since
every output is in canonical form by Lemma 28, there will be no isomorphic duplicates.

4.2 Complexity analysis

It is straightforward to prove the efficiency of Algorithm 3.

Theorem 31. Algorithm 3 takes O(n3) time, which is thus the delay for the generation of the
successor of arbitrary functional digraphs over n vertices.

Proof. Let G = ⟨C1, · · · , Cm⟩ be a functional digraph over n vertices.

– If the successor of G generated by Algorithm 3 in step 3.1, then let n1 = |C1|, . . . , nm = |Cm|
be the number of vertices of each component. We have n = n1 + · · · + nm. In the worst
case we have to try to obtain a successor generated by Algorithm 1 for each component,
but we always obtain a component of larger size except for C1. This sequence of operations
takes O(n3

1) + · · ·+O(n3
m) time. Since n3

1 + · · ·+ n3
m ≤ (n1 + · · ·+ nm)3 = n3, the output is

generated in O(n3) time.
– If the successor of G generated by Algorithm 3 is obtained in step 3.2, then the computation

of the partition of G takes linear time. The generation of the next partition according
to Algorithm 2 and the construction of the cycles of the corresponding lengths also take
linear time. Therefore, the output is generated in O(n) time, plus the O(n3) time spent in
step 3.1.

15

5 Implementation

We provide a proof-of-concept implementation of the algorithms by means of the funkdigen

command-line tool [14]. In its current version, it not yet meant to be an example of optimised
software, but rather a straightforward and readable translation in Python 3 of the algorithms
described in this paper, hopefully useful as a basis upon which a more efficient version may
be developed. The funkdigen tools outputs connected or arbitrary functional digraph codes as
described in Definitions 2 and 23.

6 Conclusions

We have described the first O(n3)-delay generation algorithm for the class of functional digraphs,
both connected and arbitrary, which proves that these classes of graphs can be generated with a
polynomial delay for each size n.

It is, of course, an open problem to establish if functional digraphs can be generated with a
smaller delay. That would require us to somehow avoid testing O(n2) possible merges in order to
construct the next candidate digraph, and to avoid checking if it is its own minimal rotation at
each iteration. Is an amortised constant time delay even possible?

Another line of research would be to describe a variation of this algorithm (based on merging
adjacent trees) suitable for more general classes of graphs, without the uniform outdegree 1
constraint. More generally, we hope that the techniques described in this paper can find application
to other combinatorial problems.

Acknowledgements Antonio E. Porreca was funded by his salary as a French State agent,
and Ekaterina Timofeeva by the undergraduate internship program “Incubateurs de jeunes
scientifiques” of Aix-Marseille Université and by the Agence National de la Recherche (ANR)
project ANR-18-CE40-0002 FANs. Both authors are affiliated to Aix-Marseille Université, CNRS,
LIS, Marseille, France.

We would like to thank Kellogg S. Booth, Jerome Kelleher, Brendan D. McKay, and Kévin
Perrot for their useful suggestions and for providing some bibliographic references.

References

1. Beyer, T., Mitchell Hedetniemi, S.: Constant time generation of rooted trees. SIAM Journal on
Computing 9(4), 706–712 (1980), https://doi.org/10.1137/0209055

2. Booth, K.S.: Lexicographically least circular substrings. Information Processing Letters 10(4–5),
240–242 (1980), https://doi.org/10.1016/0020-0190(80)90149-0

3. Booth, K.S.: Lexicographically least circular substrings. https://www.cs.ubc.ca/~ksbooth/PUB/
LCS.shtml (2019), accessed: 2022-10-31, archived at http://web.archive.org/web/20220725150720/
https://www.cs.ubc.ca/~ksbooth/PUB/LCS.shtml

4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph
planarity using PQ-tree algorithms. Journal of Computer and System Sciences 13(3), 335–379 (1976),
https://doi.org/10.1016/S0022-0000(76)80045-1

5. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in
log-space. In: 2009 24th Annual IEEE Conference on Computational Complexity. pp. 203–214 (2009),
https://doi.org/10.1109/CCC.2009.16

6. Dennunzio, A., Dorigatti, V., Formenti, E., Manzoni, L., Porreca, A.E.: Polynomial equations over
finite, discrete-time dynamical systems. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari,
K., Manzoni, L. (eds.) Cellular Automata, 13th International Conference on Cellular Automata for
Research and Industry, ACRI 2018. Lecture Notes in Computer Science, vol. 11115, pp. 298–306.
Springer (2018), https://doi.org/10.1007/978-3-319-99813-8_27

16

https://doi.org/10.1137/0209055
https://doi.org/10.1016/0020-0190(80)90149-0
https://www.cs.ubc.ca/~ksbooth/PUB/LCS.shtml
https://www.cs.ubc.ca/~ksbooth/PUB/LCS.shtml
http://web.archive.org/web/20220725150720/https://www.cs.ubc.ca/~ksbooth/PUB/LCS.shtml
http://web.archive.org/web/20220725150720/https://www.cs.ubc.ca/~ksbooth/PUB/LCS.shtml
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1109/CCC.2009.16
https://doi.org/10.1007/978-3-319-99813-8_27

7. Goldberg, L.A.: Efficient algorithms for listing unlabeled graphs. Journal of Algorithms 13(1), 128–143
(1992), https://doi.org/10.1016/0196-6774(92)90009-2

8. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs. Discrete Mathematics and Its
Applications, CRC Press, second edn. (2011), https://doi.org/10.1201/b10959

9. Kelleher, J., O’Sullivan, B.: Generating all partitions: A comparison of two encodings.
arXiv:0909.2331v2 [cs.DS] (2009), https://doi.org/10.48550/arXiv.0909.2331

10. McKay, B.D.: Isomorph-free exhaustive generation. Journal of Algorithms 26(2), 306–324 (1998),
https://doi.org/10.1006/jagm.1997.0898

11. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. Journal of Symbolic Computation 60,
94–112 (2014), https://doi.org/10.1016/j.jsc.2013.09.003

12. Meir, A., Moon, J.W.: On random mapping patterns. Combinatorica 4, 61–70 (1984), https:

//doi.org/10.1007/BF02579158

13. OEIS Foundation Inc.: Number of mappings (or mapping patterns) from n points to themselves; num-
ber of endofunctions. The On-Line Encyclopedia of Integer Sequences (2023), published electronically
at https://oeis.org/A001372

14. Porreca, A.E., Timofeeva, E.: funkdigen: A generator of functional digraphs up to isomorphism.
https://github.com/aeporreca/funkdigen (2023)

15. Valiente, G.: Algorithms on Trees and Graphs. Texts in Computer Science, Springer, 2nd edn. (2021),
https://doi.org/10.1007/978-3-030-81885-2

17

https://doi.org/10.1016/0196-6774(92)90009-2
https://doi.org/10.1201/b10959
https://doi.org/10.48550/arXiv.0909.2331
https://doi.org/10.1006/jagm.1997.0898
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1007/BF02579158
https://doi.org/10.1007/BF02579158
https://oeis.org/A001372
https://github.com/aeporreca/funkdigen
https://doi.org/10.1007/978-3-030-81885-2

	Polynomial-delay generation of functional digraphsup to isomorphism

