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Abstract. Finite discrete-time dynamical systems (FDDS) model phe-
nomena that evolve deterministically in discrete time. It is possible to
define sum and product operations on these systems (disjoint union and
direct product, respectively) giving a commutative semiring. This alge-
braic structure led to several works employing polynomial equations to
model hypotheses on phenomena modelled using FDDS. To solve these
equations, algorithms for performing the division and computing k-th
roots are needed. In this paper, we propose two polynomial algorithms
for these tasks, under the condition that the result is a connected FDDS.
This ultimately leads to an efficient solution to equations of the type
AX"* = B for connected X. These results are some of the important final
steps for solving more general polynomial equations on FDDS.
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1 Introduction

Finite discrete-time dynamical systems (FDDS) are pairs (X, f) where X is a
finite set of states and f: X — X is a transition function (where no ambiguity
arises, we will usually denote (X, f) simply as X). These systems emerge from
the analysis of concrete models such as Boolean networks [T0/TT] and are applied
to biology [I7UI6II] to represent, for example, genetic regulatory networks or
epidemic models. We can find them also in chemistry [7], to represent the evolution
over discrete time of chemical reactions, or information theory [9].

We can identify dynamical systems with their transition graph, which have
uniform outgoing degree one (these are also known as functional digraphs). Their
general shape is a collection of cycles with a finite number of directed trees (with
arcs pointing towards the root, i.e., in-trees) anchored to them by the root. The
nodes inside the cycles are periodic states, while the others are transient states.

The set (D, +, x) of FDDS taken up to isomorphism with the disjoint union as
a sum operation (corresponding to the alternative execution of two systems) and
the direct product [12] (corresponding to synchronous execution) is a commutative
semiring [2]. However, this semiring is not factorial, i.e., a FFDS admits, in general,
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multiple factorizations into irreducibles. For this reason, the structure of product
is more complex compared to other semirings such as the natural numbers, and
its understanding remains limited. We are still unable to characterize or efficiently
detect the FDDS obtained by parallel execution of smaller FDDS.

Some literature analyzes this problem limited to periodic behaviours, i.e.,
to FDDS with permutations as their transition function [BJ84]. Studying these
restricted FDDS is justified by the fact that they correspond to the stable,
asymptotic behaviour of the system. However, transient behaviour is more vast
and various when modelling phenomena such as those from, for example, biology
or physics. FDDS with a single fixed point have also been investigated [14]
focusing more on the transient behaviours. Nevertheless, we cannot investigate
general FDDS through a simple combination of these two techniques.

A direction for reducing the complexity of the decomposition problem is
finding an efficient algorithm for equations of the form AX = B, i.e., for dividing
FDDS. The problem is trivially in NP, but we do not know its exact complexity
(e.g., NP-hard, Gl, or P). However, [5] proved that we can solve these equations
in polynomial time if A and B are certain classes of permutations, i.e., FDDS
without transient states. Nevertheless, the complexity of more general cases is
unknown even for permutations.

Another direction is to propose an efficient algorithm for the computation of
roots over FDDS. Since [I4], we are aware of the uniqueness of the solution of
k-th roots, but once again we do not know the exact complexity of the problem
beyond a trivial NP upper bound.

In this paper, we will exploit the notion of unroll introduced in [14] to address
the division and the root problems in the specific case where X is connected
(i.e., the graph of X contains just one connected component). More precisely,
we start by showing that we can compute in polynomial time a FDDS X such
that AX = B, if any exists. We also show that we can compute in polynomial
time, given an FDDS A and a strictly positive integer k, a connected FDDS X
such that X* = A, if any exists. These two last contributions naturally lead to a
solution to the more general equation AX* = B.

2 Definitions

In the following, we will refer to the in-trees constituting the transient behaviour
of FDDS just as trees for simplicity. An FDDS has a set of weakly connected
components, each containing a unique cycle. In the following, we will refer to
FDDS with only one component as connected.

In literature, two operations over FDDS have been considered: the sum (the
disjoint union of the components of two systems) and the product (direct product
[12] of their transition graphs). Let us recall that, given two digraphs A = (V| E)
and B = (V/, E’), their product A x B is a digraph where the set of nodes is
V x V' and the set of edges is {((v,v’), (u,u)) | (v,u) € E, (v',u’) € E'}. When
applied to the transition graphs of two connected FDDS with cycle lengths
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respectively p and p/, this operation generates ged(p, p’) components with cycles
of length lem(p, p") [212].

Let us recall the notion of unroll of dynamical systems introduced in [14].
We will denote trees and forests using bold letters (in lower and upper case
respectively) to distinguish them from FDDS.

Definition 1 (Unroll). Let A be an FDDS (X, f). For each state w € X and
k € N, we denote by f~%(u) = {v € X | f*(v) = u} the set of k-th preimages
of u. For each u in a cycle of A, we call the unroll tree of A in u the infinite
tree t, = (V,E) having vertices V.= {(s,k) | s € f~%(u),k € N} and edges
E={((v,k),(f(v),k—1))} C V2. We call unroll of A, denoted U(A), the set
of its unroll trees.

Unroll trees have exactly one infinite branch on which the trees representing
transient behaviour hook and repeat periodically. Remark that the forest given
by the unroll of a connected FDDS may contain isomorphic trees and this results
from symmetries in the original graph.

This transformation from an FDDS to its unroll has already proved successful
in studying operations (particularly the product operation) at the level of transient
behaviours. Indeed, the sum (disjoint union) of two unrolls corresponds to the
unroll of the sum of the FDDS; formally, U(A) + U(A") = U(A + A’). For the
product, it has been shown that it is possible to define an equivalent product
over unrolls for which U(A) x U(A") = U(A x A’). Here and in the following, the
equality sign will denote graph isomorphism.

Let us formally define the product of trees to be applied over the unroll of two
FDDS. Since it is known that the product distributes over the different trees of
the two unrolls [6], it suffices to define the product between two trees. Intuitively,
this product is the direct product applied layer by layer. To define it, we let
depth(v) be the distance of the node from the root of the tree.

Definition 2 (Product of trees). Consider two trees t1 = (V1,E1) and
to = (Va, E2) with roots r1 and rq, respectively. Their product is the tree
t1 x to = (V, E) such that V = {(v,u) € Vi x Va | depth(v) = depth(u)} and
E = {((v,u), (W, u)) ]| (v,u) € V,(v,v") € Eq,(u,u') € Ey}.

In the following, we use a total order < on finite trees introduced in [I4],
which is compatible with the product, that is, if t; < to then t;t < tot for all
tree t. Let us briefly recall that this ordering is based on a vector obtained from
concatenating the incoming degrees of nodes visited through a BFS. During graph
traversal, child nodes (preimages in our case), are sorted recursively according to
this very order, resulting in a deterministic computation of the vector.

We will also need the notion of depth for finite trees and forests. The depth
of a finite tree is the length of its longest branch. For a forest, it is the maximum
depth of its trees. In the case of unrolls, which have infinite paths, we can adopt
the notion of depth of a dynamical system (that is, the largest depth among the
trees rooted in one of its periodic states). For an unroll tree t, its depth is the
depth of a connected FDDS A such that t € U(A). See Figure
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Fig. 1. The unroll U(A) of a disconnected FDDS A. Only the first 6 levels of U(A) are
shown. Both the FDDS and its unroll have depth 2.

We now recall three operations defined in [14] that will be useful later. Given a
forest F, we denote by D(F') the multi-set of trees rooted in the predecessors of the
roots of F. Then, we denote by R(F) the tree such that D(R(F)) = F. Intuitively,
this second operation connects the trees to a new common root. Finally, given a
positive integer k, we denote C(t, k) the induced sub-tree of t composed by the
vertices with a depth less or equal to k. Let us generalize the same operation
applied to a forest F = t; + ... + t,, as C(F, k) = C(t1,k) + ... + C(ty,, k).

3 Complexity of FDDS division with connected quotient

In this section we establish an upper bound to the complexity of division over
FDDS. More formally, our problem is to decide if, given two FDDS A and B,
there exists a connected FDDS X such that AX = B. To achieve this, we will
initially prove that cancellation holds over unrolls, i.e., that EX = EY implies
X =Y for unrolls E, X, Y. Later, we will extend the algorithm proposed in [14]
Figure 6] to handle more general unrolls (rather than just those consisting of a
single tree), ultimately leading to our result.

We begin by considering the case of forests containing a finite number of
finite trees; we will refer to them as finite tree forests. We will later generalise
the reasoning to forests such as unrolls.

Lemma 1. Let A, X, and B be finite tree forests. Then, AX = B if and only
if R(AYR(X) = R(B).

Proof. (<) Assume R(A)R(X) = R(B). Then,D(R(A)R(X)) = D(R(B)) = B.
Moreover, since R(A) and R(X) are finite trees, by [I4, Lemma 7] we have:

D(R(A)R(X)) = D(R(A))D(R(X)) = AX.
(=) We can show the other direction by a similar reasoning. a

Thanks to this lemma, we can generalise Lemma 21 of [I4] as follows.
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Lemma 2. Let A, X, and Y be finite tree forests. Then AX = AY if and only
if C(X,depth(A)) = C(Y,depth(A)).

Proof. (<) By the definition of tree product, all nodes of X (resp., Y) of depth
larger than depth(A) do not impact the product AX (resp., AY). Thus, we have
AX = AC(X,depth(A)) and AY = AC(Y,depth(A)). Since C(X, depth(A)) =
C(Y,depth(A)), we conclude that AX = AY.

(=) Suppose AX = AY. By Lemma (1] we have R(A)R(X) = R(A)R(Y).
Since R(A), R(X), and R(Y) are finite trees, we deduce [14, Lemma 21]

C(R(X), depth(R(A))) = C(R(Y), depth(R(A))) (1)

For all forest F and d > 0, we have that D(C(F, d)) is the multiset containing the
subtrees rooted on the predecessors of the roots of C(F, d). It is therefore the same
multiset as that which is composed of the subtrees rooted on the predecessors of
the roots of F cut at depth d — 1. It follows that C(D(F),d — 1) = D(C(F,d)). In
particular, for F = R(X) and d = depth(A) + 1 = depth(R(A)), we have

D(C(R(X),depth(R(A)))) = C(X, depth(A)).

Likewise, D(C(R(Y),depth(R(A)))) = C(Y,depth(A)). By applying D(-) to
both sides of (1]}, we conclude C(X, depth(A)) = C(Y,depth(A)). O

Lemma [2]is a sort of cancellation property subject to a depth condition. The
first step to prove cancellation over unrolls is proving the equivalence between
the notion of divisibility of unrolls and divisibility over deep enough finite cuts.

Proposition 1. Let A, X, and B be FDDS with « equal to the number of unroll
trees of U(B). Let n > « + depth(U(B)). Then

UAU(X) =U(B) if and only if CU(A),n)C(U(X),n) =CU(B),n)

To prove Proposition [I} we can apply the same reasoning of [14, Lemma 38] (see
appendix for the details of the proof).

We remark that the cut operation over U(B) at a depth n generates a forest
where the size of each tree is in O(m?) and the total size is in O(m3) with m
the size of B (i.e., the number of nodes), since the chosen n is at most m. Now,
we can prove the main result of this section.

Theorem 1. For unrolls A, X, Y we have AX = AY if and only if X =Y.

Proof. Let a be the number of trees in AX and n > a+depth(AX) be an integer.
By Proposition I, AX = AY if and only if C(A,n)C(X,n) =C(A,n)C(Y,n). In
addition, by Lemma[2] C(A,n)C(X,n) = C(A,n)C(Y,n) if and only if C(X,n) =
C(Y,n). By Proposition |1} the theorem follows. ad

Let us introduce the notion of periodic pattern of an unroll tree. Recall that
an unroll tree t has exactly one infinite branch on which the trees (to,t1,...)
representing transient behaviour hook and repeat periodically. Let p be a positive
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integer. A periodic pattern with period p of t is a sequence of p finite trees
(to,...,tp—1) rooted on the infinite branch such that, for all : € N we have
t; = t; mod p- Let us point out that the idea here is to obtain a set of trees such
that we represent all different behaviours repeating in all unroll trees, obtaining
a finite representation.

For connected FDDS, since its period p is the number of trees in its unroll,
we can reconstruct the FDDS itself from a periodic pattern (to,...,t,—1) of one
of its unroll trees t,, by adding edges between t; and t(; 1) mod p for all i. We call
this operation the roll of t,, of period p. The following lemma shows that we can
recover the periodic pattern of an unroll tree from a deep enough cut.

Lemma 3. Let A be a connected FDDS of period p, t be an unroll tree of U(A),
and n > p + depth(U(A)). Let (vp,...,v0) be a directed path in C(t,n) such that
depth(v,) =n and vy is the root of the tree. Then, nodes vp,...,vo necessarily
come from the infinite branch of t.

Proof. We assume, by contradiction, that at least one of the nodes vy, ..., vy does
not come from the infinite branch of t. Let v, be the node of (v,_1,...,vg) with
maximal depth coming from the infinite branch of t; there always is at least one of
them, namely the root vy. We have depth(v,) < depth(v,) + depth(t). However,
we assumed depth(v,) < p, thus depth(v,) < p+ depth(t). Since, depth(v,) = n,
we have n < p + depth(t) = p + depth(U(A)) which is a contradiction. O

We can finally describe a division algorithm for FDDS working under the
hypothesis that the quotient is connected.

Algorithm 1. Given two FDDS A and B, where U(B) has a trees, we can
compute X such that X is a connected FDDS and AX = B (if any exists) by

1. cutting U(A) and U(B) at depth n = o+ depth(U(B))

2. computing x with the division algorithm [T]|] to divide the trees R(C(U(B),n))
by R(CU(A), n))

3. computing the connected FDDS X as the roll of period p of any tree of D(x),
where p is equal to the number of trees in D(x)

4. and verifying if X multiplied by A is isomorphic to B.

Since the depth where we cut is large enough, Proposition [I] Lemma [I] and
the correctness of the division algorithm of [I4] imply that the tree x computed
in Step [2] of Algorithm [1]satisfies C(U(A),n)D(x) = C(U(B), n). By the definition
of unroll, since we only search for connected FDDS, if D(x) is the cut of an
unroll then the rolls of each tree of D(x) at period p are isomorphic. Furthermore,
Lemma (3| ensures that we can roll each tree in D(x). However, D(x) is not
necessarily the cut of an unroll and it is possible that there exists an FDDS X
such that D(x) = C(U(X),n) but AX # B (an example can be seen in Figure[2).
As a consequence, Step |4 of Algorithm [1}is mandatory to ensure its correctness.

Theorem 2. Algom'thm runs in O(mP®) time, where m is the size of its inputs.
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Fig. 2. Three FDDSs A, B and C such that AB # C but U(A)U(B) = U(C). Here the
symbol x denotes the product of FDDSs on the top, and of forests on the bottom.

Proof. The cuts of depth n of the unrolls of A and B can be computed in O(m?)
time and the size of the result is O(m?). In fact, we can construct C(U(A),n) and
C(U(B),n) backwards from their roots up to depth n; the size of C(U(A),n) is
bounded by the size of C(U(B),n), which is O(m?). By analysing the division tree
algorithm in Figure 6 of [I4], we can check that it can be executed in cubic time.
Moreover, since its inputs have size O(m?), step [2| of Algorithm [1| requires O(m?)
time. The roll procedure of a tree can be computed by a traversal, requiring
O(m?) time. Finally, the product of two FDDS is quadratic-time on its input
but linear-time on its output. However, in our case, the size of the output of AX
is bounded by the size of B; hence, the product can be computed in O(m) time.
Finally, the isomorphism test requires O(m) [13]. O

4 Complexity of computing k-th roots of unrolls

The purpose of this section is to study the problem of computing connected roots
on FDDS, particularly on transients. Let A =t; + ...+ t, be a forest and k a
positive integer. Then A* = D keyt =k (kl,il.c.,kn) T, tfi; furthermore, since
the sum of forests is their disjoint union, each forest (in particular A*) can be
written as a sum of trees in a unique way (up to reordering of the terms). The
injectivity of k-th roots, in the semiring of unrolls, has been proved in [I4]. Here,
we study this problem from an algorithmic and complexity point of view, and
find a polynomial-time upper bound for the computation of k-th roots.

We begin by studying the structure of a forest of finite trees raised to the k-th
power. Indeed, if we suppose X = t; + ...+ t,, with t; < t;;1, we want to be
able to identify the smallest tree of X* from the product t; x H?Zl t;. Moreover,
we want to be able to identify it for all t;.

Hereafter, we consider a® to be equivalent to the simple oriented path with
length equivalent to the depth of a (the same is true for forests).
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Lemma 4. Let X be a forest of the form X =t1+...+t, (with t; < t;y1) and
k a positive integer. For any tree t; of depth d; in X, the smallest tree ts of depth
d; with factor t; in X* is isomorphic to tE='t;, where t,, is the smallest tree of
X with depth at least d;.

Proof. Let us assume that the smallest tree t, of depth d; with factor t; in XF*
is not isomorphic to t¥'t;. Two cases are possible. Either t, contains a third
factor other than t,, and t;, or it is of the form tﬁ;kitfﬂ with k; > 1.

In the former case, let us suppose that there exists a € {1,...,i — 1} \ {m}
and k, > 0 such that t, # t,, and t, is isomorphic to t¥tkt*m Remark that,
according to [I4] Lemma 10], the smallest tree of depth d; with factor t; in
X% necessarily has all its factors of depth at least d;. For this reason, we can
assume depth(t,) > d; without loss of generality. However, since t,, < t,, we
have thmT1tka=1 < thmtke Thus, we have that tFithmt1tka=1 < tFighmtha This
brings us into contradiction with the minimality of ts.

In the second case, we assume that t is isomorphic to tﬁ:kitfi with k; > 1.
By hypothesis, we have t; > t,,. If we consider the case of t,, < t;, we have
thokitlghi=l < gh=kith Once again, this is in contradiction with the minimality
of ts. In the case of t,,, = t;, we have tfn’ki*ltf"_l = tfn*kitfi. But we supposed
t, not isomorphic to t*~'t;. This concludes the proof. a

Before describing an algorithmic technique for computing roots over unrolls
(i.e., forests), we need a last technical lemma.

Lemma 5. Let x and a be two finite trees such that x* = a, and k a positive
integer. Then, D(a) = D(x)¥.

Proof. Since x is a tree, for all i < k, x* is also a tree. According to [14] Lemma
7], we have D(a) = D(x*) = D(x)*. O

We now introduce an algorithmic procedure to compute the roots over forests
based on an induction over decreasing depths in which, each time, we reconstruct
part of the solution considering the smallest tree with at least a specific depth
(according to Lemmas 4| and .

Theorem 3. Given a forest A and k a strictly positive integer, we can compute
X such that X* = A with Algorithm .

In Algorithm [2] the main idea is to extract iteratively the minimal tree among
the tallest ones in A (i.e., ts). This tree will be used to reconstruct one of the trees
of X (i.e., t;). This can be done in two ways according to two possible scenarios.
In the first case, t4 is smaller than the smallest one already reconstructed (i.e.,
t,,,) raised to the power k. If this is the case, we compute a new tree in X through
a recursive call to our root function. In the second case, the extracted tree is
greater than t® . This means, by Lemma 4| that it is a product of the smallest
reconstructed (i.e., t,,) one and a new one (i.e., t;). In this case, the latter can
be computed by the divide algorithm of [I4]. After the reconstruction of a tree
t; of X, we remove from A all the trees obtainable from products of already
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Algorithm 2 root
Require: A a forest, k an integer
if A is a path then
return A
end if
R+—o
t — O
F+ A
while F # & do
F « A\ R"
ts « min{t | t € F,depth(t) = depth(F)}
10: if t,, = J or tfn > ts then

©

11: t; < R(root(D(ts), k))

12: tm — t;

13: else

14: t; + divide(ts, tr 1)

15: end if

16:  if t; = Lor (R+t;)" ¢ A then
17: return L

18: end if

20: end while
21: return R

computed trees in X. This allows us to extract progressively shorter trees t¢ from
A and to compute consequently shorter trees of X. When we remove all trees in
A obtainable from trees t; with depth at least d; in X, this leaves us only trees
with depth at most d;. Since for each depth, the number of trees of this depth is
finite, the algorithm necessarily halts.

Let us consider an example. In Figure [3] in order to compute the left side
from the right one, the first tree considered is t2, the single tallest one. The
latter can be used to compute t; recursively. Next, the smallest one among the
remaining ones is t3, which is smaller than t?. Thus, we can compute to again
through recursion. Finally, the last tree extracted, after removing the trees with
exclusively to and t; as factors, is tote. Since this time t2 is smaller, we can get
the third and final tree ty by dividing it by the smallest computed tree yet.

° 2 L]

} |
° ° o o ° ° ° e o o o oooe
| } \/ | | | VNS N
e |+ e + o = e+2xe + ef2xef+2xe 4+ e
to < t1 < t2 t3 < tot: < t? < tote < tite < t3

Fig. 3. Order of the trees in the square of a forest.



10 F. Doré, K. Perrot, A.E. Porreca, S. Riva, M. Rolland

Theorem 4. Algom'thm@ runs in O(m?) time if k is at most |logym/|, where
m is the size of A.

Proof. If A is a path, then the algorithm halts in linear time O(m) on line

Otherwise, there exists a level ¢ of A containing 8 > 2 nodes. In order to
justify the upper bound on k, suppose R* = A. Then, level i of R contains ¢/
nodes. The smallest integer greater than 1 having a k-th root is 2%, thus 8 > 2.
Since S < m, we have k < |log, m].

Lines take linear time O(m). The while loop of lines is executed, in
the worst case, once per tree of the k-th root R, i.e., a number of times equal to
the k-th root of the number of trees in A. Line[7]takes O(1) time. The product of
trees requires linear time in its output size. Consequently, R¥ can be computed in
O(mlogm) time. Moreover, since we can remove R¥ from A in quadratic time,
we deduce that line |8 takes O(m?) time. Since the search of t4 consists of a simple
traversal, we deduce that line [J] takes O(m) time. Line [10] takes O(m logm) time
for computing t%,. If no recursive call is made, line [14]is executed in time O(m?),
where my is the size of t;. The runtime of lines is dominated by line
which takes O(m?) as line

Since each tree t, in A is used at most once, we have Y m3 < m3; as a
consequence, the most expensive lines of the algorithm (namely, and
have a total runtime of O(m?) across all iterations of the while loop.

We still need to take into account the recursive calls of line By taking once
again into account the bound Y m? < m?3, the total runtime of these recursive
calls is also O(m?). We conclude that Algorithm [2 runs in time O(m?). O

Corollary 1. Let A be a forest. Then, it is possible to decide in polynomial time
if there exists a forest X and an integer k > 1 such that X* = A.

Proof. Since k is bounded by the logarithm of the size of A and, according to
Theorem 4} we can compute the root in O(m3), we can test all k (up to the
bound) and check if there exists a X such that X* = A in O(m?logm), where
m denotes once again the size of A. a

According to Corollary [I} we easily conclude that the corresponding enumer-
ation problem of finding all solutions X (for all powers k) is in EnumP, since
the verification of a solution can be done in polynomial time and the size of a
solution is polynomial in the size of the input. Moreover, the problem is in the
class DelayP since the time elapsed between the computation of one solution (for
a certain k) and the next is polynomial. We refer the reader to [I5] for more
information about enumeration complexity classes.

Now that we have a technique to compute the root of forests, let us think
in terms of unrolls of FDDS. Consider an FDDS A and its unroll A = U(A).
According to Proposition |1} we can compute the FDDS X such that A = X*
by considering the forest F = C(A,n) where « is the number of trees in F and
n = a+ depth(A). Again, this depth allows us to ensure that all the transient
dynamics of the dynamical system are represented in the different trees. Applying
the root algorithm on F, we obtain the result of the root as a forest of finite
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trees. However, this is just a candidate solution for the corresponding problem
over the initial FDDS (for the same reasoning as in the case of division). In order
to test the result of the root algorithm, as before, we realised the roll of one tree
in the solution to period p with p as the number of trees in the result. Then to
decide if X is truly the k-th root of A, we verify if X* = A where X is the result
of the roll operation. That is possible because the algorithm is designed to study
connected solutions. Indeed, the following holds.

Corollary 2. Let A be a FDDS, it is possible to decide if there exists a connected
FDDS X and an integer k > 1 such that X* = A in polynomial time.

By combining the division algorithm with the root algorithm, we are now
able to study equations of the form AX* = B. Given FDDS A and B and k > 0,
we can first compute the result Y of the division of C(U(B),n) by C(U(A),n),
where « is the number of trees in U(B) and n = a+depth(B). Then, we compute
the k-th root X of Y. After that, we make the roll of one tree of X in period p,
with p the number of trees in X. Then, using the roll result X, we just need to
verify if AX* = B. Once again, the solutions found by this method are only the
connected ones, and further non-connected solutions are also possible.

5 Conclusions

In this article we have proven the cancellation property for products of unrolls
and established that the division of FDDSs is polynomial-time when searching
for connected quotients only. Furthermore, we have proven that calculating the
k-th root of a FDDSs is polynomial-time if the solution is connected. Finally, we
have shown that solving equations of the form AX* = B is polynomial if X is
connected. However, numerous questions remain unanswered.

The main direction for further investigation involves removing the connectivity
condition. Although the cancellation property of unrolls we proved and the new
polynomial-time algorithm for the division suggest that the primary challenge for
FDDS division lies in the cycles rather than the transients, the same cannot be
said for the computation of the k-th root of FDDS. Another intriguing direction
is solving general polynomial equations P(X,...,X,) = B with a constant
right-hand side B. While this appears to be at least as challenging as division,
some specific cases, such as when the polynomial is injective, could yield more
direct results. Furthermore, the results of this work can improve the state of
the art of the solution of P(Xi,...,X,) = B where polynomial P is a sum
of univariate monomials [4]. Indeed, a technique to solve (and enumerate the
solutions) of this type of equation in a finite number of systems of equations of
the form AX* = B has been introduced. Thus, our result, which is more efficient
than previously known techniques, can have a positive impact on the complexity
of the proposed pipeline. It would also be interesting to investigate whether our
techniques also apply to finding nontrivial solutions to equations of the form
XY = B with X and Y connected, which would make it possible to improve our
knowledge of the problem of irreducibility.
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Appendix

Proposition [1] Let A, X, and B be FDDS with « equal to the number of unroll
trees of U(B). Let n > o+ depth(U(B)). Then

UAU(X) =U(B) if and only if CAU(A),n)C(U(X),n) =CU(B),n).

Proof. (=) If U(A)U(X) = U(B) then CU(A)U(X),n) = C(U(B),n) for all
n > 0. And since, C(U(A)U(X),n) = C(U(A),n)C(U(X),n), one direction follow.

(<) For the other direction, we employ the same logic as in the proof of the
Lemma 38 of [I4] i.e., extending an isomorphism of the unrolls cut to depth n to
an isomorphism of the whole unrolls without cuts.

For this proof, we partially change the unrolls definition; more precisely, we
change the set of nodes in each unroll tree. Indeed, we need to explicitly set (in the
second coordinate) the root of each tree while in the former definition, the root is
left implicit. Thus, as in the original definition, for each periodic state u we define
an unroll tree t, = (V, E) as having vertices V = {(s,u, k) | s € f~*(u), k € N}
and edges E = {((v,u, k), (f(v),u,k — 1))} € V2 with f the transition function
of the dynamical system. Remark that this produces an unroll tree having
root (u,u,0). Let ¢ : V(C(U(B),n)) — V(C(U(A),n)C(U(X),n)) be a forest
product isomorphism for the product C(U(A),n)C(U(X),n) = C(U(B),n). Let
d:V(B)? = NU{-1} be the function associating each pair (u,v) to the length
of the shortest directed path from u to v, if it exists in B, otherwise —1. We
call D the maximum value d(u,v) with (u,v) € V(B)?UV(A4)2 UV (X)2. Let us
point out that n > D.

We extend ¢ to ¢ : V(U(B)) — V(U(A)U(X)) such that, for all (b,r, h) €
V(U(B)) where h > n, we have ¢(b,r,h) = ((a,r1,h), (x,re,h)) if and only if
(b, r,d) = ((a,71,d), (x,72,d)) where

d = max(d(b,r),d((a,x), (r1,72))) = max(d(b,r),d(a,r1),d(z,72))

where (a,x) and (r1,7r2) are states of the FDDS AX. Remark that ¢ is a well-
defined function, since (b, r,d) belongs to the domain of ¢, as d < D < n.

Now we prove that ¢ is a valid forest product isomorphism. First, we show
the bijectivity of ¢. The surjectivity of ¢ is an immediate consequence of the
surjectivity of ¥. As for its injectivity, suppose that ¢(b,r, h) = ¢(b', ', h’'). We
denote ¢(b, 7, h) = ((a,r1,h), (z,72,h)) and @b, 7', h') = ((a/, 71, h'), (&', 75, h')).
Thus (a,z,71,7r2,h) = (a’, &', 7,74, h).

By the definition of ¢, we have

(b, r,d) = ((a,71,d), (z,72,d))

and

((a,r},d), (2,15, d'))
= ((a,r1,d), (z,r2,d")).

', d')
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By proving that d = d’, we obtain (b, r,d) = ¥(¥',r’,d’) and, by injectivity of
¥, we deduce (b,r,d") = (b',7',d") and, in particular, b = b’ and r = r’; since we
already know that h = A/, the injectivity of ¢ follows.

Since v is a forest product isomorphism, we deduce that (b,r,d) and (V/, 7/, d")
are two nodes of the same tree. Indeed, the two nodes ((a,r1,d), (z,72,d)) and
((a,7r1,d"), (x,72,d")) belong to the same tree since they have the same root
coordinate. Thus, we deduce that r = r’.

Moreover, since 1 is a forest product isomorphism, the distance between
((a,r1,d), (x,7r2,d)) and infinite branch of its tree (cut to depth n) equals the
distance between (b, 7, d) and the infinite branch of its tree (cut to depth n). And
since this distance is the depth of node (a,z) in AX and b in B, we deduce that
depthax((a,z)) = depthp(b). For the same reason, depthax ((a,z)) = depthp(b').
So depthp(b) = depthp (V). Besides, by the definition of unroll, A is the depth of
(b, 7, h) in the unroll tree, and we deduce that (b, 7, h) and (b',r, h) have the same
depth. This implies that d(b,r) = d(b',r"). Hence d = d' and, as a consequence,
the injectivity of ¢ follows.

Now, we show that ¢(b,r, h) is a root if and only if (b, r, h) is a root. Since v
is a forest product isomorphism, we have (a,r1,d) and (x,rs,d) are roots if and
only if (b,r,d) is a root. In addition, the depth of any root is 0, so d = 0. So, we
conclude that ¢(b,r, h) is a root if and only if h = 0 and (b, r, h) is a root.

Finally, we need to show that for all

((a, 1, ), (2,72, h)) , ((a,r1, 1), (2, rg, 1)) € VU(AU(X))
we have
(67 (Casras ), @ raa ) S 672 (@71, ), @75, 1)) € BU(B)
if and only if
(@10 (@71, 1)) € BQU(A)) and ((@,72,h) , (2,79, 1)) € BU(X)),

Since v is a forest product isomorphism, we have ((b7 r,d), (b’,r',d’)) €
E(C(U(B),n)) if and only if

(@ rad), @ s d)) s (@4, ), (@1, ) € ECUA), m)CU(X), ).
So, by the definition of ¢ that is, if and only if
(@i, h), (ra, 1) s (@1 0, (&5 1)) € BUATU(X))

€ E(U(X)) by the Definition [2| of tree product. This proves that U(B)

which is equivalent to ((a, 1, h), (a/,r{,h')) € E(U(A)) and ((z, 72, h), (z/, 75, 1))
UAU(X). O
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