
Sublinear-Space P Systems
with Active Membranes

Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{porreca,leporati,mauri,zandron}@disco.unimib.it

Abstract. We introduce a weak uniformity condition for families of
P systems, DLOGTIME uniformity, inspired by Boolean circuit com-
plexity. We then prove that DLOGTIME-uniform families of P systems
with active membranes working in logarithmic space (not counting their
input) can simulate logarithmic-space deterministic Turing machines.

1 Introduction

Research on the space complexity of P systems with active membranes [4] has
shown that these devices, when working in polynomial and exponential space,
have the same computing power of Turing machines subject to the same restric-
tions [7, 1]. In this paper we investigate the behaviour of P systems working in
sublinear space.

This requires us, first of all, to define a meaningful notion of sublinear space
in the framework of P systems, inspired by sublinear space Turing machines,
where the size of the input is not counted as work space.

Since sublinear-space Turing machines are weaker (possibly strictly weaker)
than those working in polynomial time, we also define a uniformity condition
for the families of P systems that is weaker than the usual P uniformity, i.e.,
DLOGTIME uniformity, as usually employed for families of Boolean circuits [2].

Using these restrictions, we show that logarithmic-space P systems with ac-
tive membranes are able to simulate logarithmic-space deterministic Turing ma-
chines, and thus to solve all problems in L.

2 Definitions

Here we recall the basic definition of P systems with active membranes, while
at the same time introducing an input alphabet with specific restrictions.

Definition 1. A P system with (elementary) active membranes of initial degree
d ≥ 1 is a tuple Π = (Γ,∆,Λ, µ,w1, . . . , wd, R), where:

– Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called ob-
jects;

2 A.E. Porreca, A. Leporati, G. Mauri, C. Zandron

– ∆ is another alphabet, disjoint from Γ , called the input alphabet;
– Λ is a finite set of labels for the membranes;
– µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes enumerated by 1, . . . , d; fur-
thermore, each membrane is labeled by an element of Λ in a one-to-one way;

– w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in the d regions of µ;

– R is a finite set of rules over Γ ∪∆.

Each membrane possesses, besides its label and position in µ, another at-
tribute called electrical charge (or polarization), which can be either neutral (0),
positive (+) or negative (−) and is always neutral before the beginning of the
computation.

A description of the available kinds of rule follows. This description differs
from the original definition [4] only in that new input objects may not be created
during the computation.

– Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w). At most one input object b ∈ ∆ may appear in w, and only if
it also appears on the left-hand side of the rule (i.e., if b = a).

– Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to β. If b ∈ ∆ then a = b must hold.

– Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β. If b ∈ ∆ then a = b must hold.

– Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the membrane h is dissolved and
its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b. If b ∈ ∆ then a = b must hold.

– Elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

They can be applied to a membrane labeled by h, having charge α, containing
an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.
If b ∈ ∆ (resp., c ∈ ∆) then a = b and c /∈ ∆ (resp., a = c and b /∈ ∆) must
hold.

Sublinear-Space P Systems with Active Membranes 3

Each instantaneous configuration of a P system with active membranes is de-
scribed by the current membrane structure, including the electrical charges, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of princi-
ples:

– Each object and membrane can be subject to at most one rule per step,
except for object evolution rules (inside each membrane several evolution
rules can be applied simultaneously).

– The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary divi-
sion rules must be subject to exactly one of them (unless the current charge
of the membrane prohibits it). The same principle applies to each membrane
that can be involved to communication, dissolution, or elementary division
rules. In other words, the only objects and membranes that do not evolve
are those associated with no rule, or only to rules that are not applicable
due to the electrical charges.

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

– In each computation step, all the chosen rules are applied simultaneously
(in an atomic way). However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps as follows. First, all evolution rules are applied inside the elementary
membranes, followed by all communication, dissolution and division rules in-
volving the membranes themselves; this process is then repeated to the mem-
branes containing them, and so on towards the root (outermost membrane).
In other words, the membranes evolve only after their internal configuration
has been updated. For instance, before a membrane division occurs, all cho-
sen object evolution rules must be applied inside it; this way, the objects
that are duplicated during the division are already the final ones.

– The outermost membrane cannot be divided or dissolved, and any object
sent out from it cannot re-enter the system again.

A halting computation of the P systemΠ is a finite sequence of configurations
C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable
by Ci via a single computation step, and no rules can be applied anymore in
Ck. A non-halting computation C = (Ci : i ∈ N) consists of infinitely many
configurations, again starting from the initial one and generated by successive
computation steps, where the applicable rules are never exhausted.

P systems can be used as recognisers by employing two distinguished objects
yes and no; exactly one of these must be sent out from the outermost membrane
during each computation, in order to signal acceptance or rejection respectively;
we also assume that all computations are halting. If all computations starting
from the same initial configuration are accepting, or all are rejecting, the P sys-
tem is said to be confluent. If this is not necessarily the case, then we have a

4 A.E. Porreca, A. Leporati, G. Mauri, C. Zandron

non-confluent P system, and the overall result is established as for nondetermin-
istic Turing machines: it is acceptance iff an accepting computation exists. All
P systems we will consider in this paper are confluent.

In order to solve decision problems (i.e., decide languages over an alpha-
bet Σ), we use families of recogniser P systems Π = {Πx : x ∈ Σ?}. Each
input x is associated with a P system Πx that decides the membership of x in
the language L ⊆ Σ? by accepting or rejecting. The mapping x 7→ Πx must be
efficiently computable for each input length [3].

Definition 2. Let E and F be classes of functions. A family of P systems Π =
{Πx : x ∈ Σ?} is said to be (E,F)-uniform if and only if

– There exists a function f ∈ F such that f(1n) = Πn, i.e., mapping the
unary representation of each natural number to an encoding of the P system
processing all inputs of length n.

– There exists a function e ∈ E mapping each string x ∈ Σ? to a multiset
e(x) = wx (represented as a string) over the input alphabet of Πn, where
n = |x|.

– For each x ∈ Σ? we have Πx = Πn(wx), i.e., Πx is Πn with the multiset
encoding x placed inside the input membrane.

Generally, the above mentioned classes of functions E and F are complexity
classes; in the most common uniformity condition E and F denote polynomial-
time computable functions.

Any explicit encoding of Πx is allowed as output of the construction, as
long as the number of membranes and objects represented by it does not exceed
the length of the whole description, and the rules are listed one by one. This
restriction is enforced in order to mimic a (hypothetical) realistic process of
construction of the P systems, where membranes and objects are presumably
placed in a constant amount during each construction step, and require actual
physical space proportional to their number; see also [3] for further details on
the encoding of P systems.

Finally, we describe how space complexity for families of recogniser P systems
is measured, and the related complexity classes. The following definition differs
from the standard one [6] in one aspect: the input objects do not contribute to
the size of the configuration of a P system. This way, only the actual working
space of the P system is measured, and P systems working in sublinear space
may be analysed. To the best knowledge of the authors, no previously published
space complexity result is invalidated by assuming that the input multiset is not
counted (the two space measures differ only by a polynomial amount).

Definition 3. Let C be a configuration of a P system Π. The size |C| of C
is defined as the sum of the number of membranes in the current membrane
structure and the total number of objects in Γ (i.e., the non-input objects)
they contain. If C = (C0, . . . , Ck) is a halting computation of Π, then the space
required by C is defined as

|C| = max{|C0|, . . . , |Ck|}

Sublinear-Space P Systems with Active Membranes 5

or, in the case of a non-halting computation C = (Ci : i ∈ N),

|C| = sup{|Ci| : i ∈ N}.
Non-halting computations might require an infinite amount of space (in sym-
bols |C| = ∞): for example, if the number of objects strictly increases at each
computation step.

The space required by Π itself is then

|Π| = sup{|C| : C is a computation of Π}.
Notice that |Π| = ∞ might occur if either Π has a non-halting computation
requiring infinite space (as described above), or Π has an infinite set of halting
computations requiring unbounded space.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recogniser P systems, and let
f : N → N. We say that Π operates within space bound f iff |Πx| ≤ f(|x|) for
each x ∈ Σ?.

By (E,F)-MCSPACED(f(n)) we denote the class of languages which can
be decided by (E,F)-uniform families of confluent P systems of type D where
each Πx ∈Π operates within space bound f(|x|). The class of problems solvable
in (E,F)-logarithmic space is denoted by (E,F)-LMCSPACED.

3 DLOGTIME-Uniform Families of P Systems

When using uniformity conditions for a family of devices, one should ensure that
the chosen uniformity condition is less powerful than the devices themselves if
the results deriving from the existence of such family are to be meaningful.
For instance, polynomial-time uniformity [5] is acceptable when the resulting
family of P systems is able to solve NP or PSPACE-complete problems (which
are conjectured to be outside P) in polynomial time. Indeed, in this case the
constructed P systems are stronger than the Turing machine constructing them
(assuming P 6= NP or P 6= PSPACE, respectively). On the other hand, a
polynomial-time uniformity condition is not appropriate when solving a problem
in P, as the entire computation can be carried out during the construction of
the family (by encoding the input instance as a yes or as a no object, which can
be done in polynomial time by hypothesis), and the P systems themselves can
accept or reject immediately by sending out the aforementioned object during
their first computation step.

Choosing an appropriate uniformity condition is thus very important when
the family of devices is, in some sense, “weak”. The question has already been
investigated in the setting of membrane computing by Murphy and Woods [3],
where AC0 circuits (or, equivalently, a variant of constant-time concurrent ran-
dom access machines) are used. Here we propose deterministic log-time Turing
machines (the usual uniformity condition for AC0 circuits) themselves as a uni-
formity condition for P systems. In a later section we shall argue that this par-
ticularly weak construction is probably sufficient to replicate most solutions in
the literature without requiring major changes.

6 A.E. Porreca, A. Leporati, G. Mauri, C. Zandron

Definition 4 (Mix Barrington, Immerman [2]). A deterministic log-time
(DLOGTIME) Turing machine is a Turing machine having a read-only input
tape of length n, a constant number of read-write work tapes of length O(log n),
and a read-write address tape, also of length O(log n). The input tape is not
accessed by using a sequential tape head (as the other tapes are); instead, during
each step the machine has access to the i-th symbol on the input tape, where i is
the number written in binary on the address tape (if i ≥ |n| the machine reads
an appropriate end-of-input symbol, such as a blank symbol). The machine is
required to operate in time O(log n).

Notice how only O(log n) bits of information of the input may be read
during a DLOGTIME computation. These machines are able to compute the
length of their input, compute sums, differences and logarithms of numbers of
O(log n) bits, decode simple pairing functions on strings of length O(log n) and
extract portions of the input of size O(log n) [2]. Due to their time restrictions,
DLOGTIME machines are not used to compute the whole representation of
a circuit, but rather to describe the “local” connections between the gates (by
deciding the immediate predecessors and the type of a single gate [8]).

As P systems are more complicated devices than Boolean circuits, we define
a series of predicates describing the various features. These predicates will define
a function 1n 7→ Πn for n ∈ N.

Let Πn = (Γ,∆,Λ, µ,w1, . . . , wd, R).1

Alphabet. The predicate alphabet(1n,m) holds for a single integer m such
that Γ ∪∆ ⊆ {0, 1}m, i.e., each symbol of the alphabets of Πn (whose index is
provided in unary notation) can be represented as a binary number of m bits.
Here m is not necessarily the minimum number of bits needed; we can choose
a larger number of bits for simplicity, but the number must be O(log n) as the
alphabet is at most polynomial in size with respect to n.

Labels. Analogously, the predicate labels(1n,m) is true for a single integer m
such that Λ ⊆ {0, 1}m, with the same restrictions as the alphabet predicate.

Membrane structure. The predicate outermost(1n, h) holds iff the mem-
brane labelled by h is the outermost membrane of the P system Πn. The predi-
cate inside(1n, h1, h2) holds iff the membrane labelled by h1 is immediately con-
tained in h2 in the initial configuration of Πn. The resulting graph µ = (V,E),
where

V = {h : outermost(1n, h)} ∪ {h1 : inside(1n, h1, h2)}
E =

{
{h1, h2} : inside(1n, h1, h2)

}
,

must be a tree, where the root is identified by the predicate outermost. Fur-
thermore, µ must be polynomial in size with respect to n. Here the labels h, h1,
h2 are provided as strings of bits of appropriate length, as described above.

The predicate input(1n, h) holds iff the input membrane of Πn is h.
1 We use this simplified form for the P system instead of the more formally correct
Πn = (Γn,∆n, Λn, µn, w1, . . . , wdn , Rn) in order to ease the notation.

Sublinear-Space P Systems with Active Membranes 7

Initial multisets. For each multiset in the initial configuration of Πn choose a
fixed string w ∈ Γ ? representing it. The predicate multiset(1n, h, i, a) holds iff
the i-th symbol of the string representing the multiset contained in membrane h
is a, where the symbol a is provided as a string of bits as described above. The
predicate is always false for i ≥ |w|. The length of w must be at most polynomial
with respect to n.

Evolution rules. The predicate #evolution(1n, h, α, a,m) holds iff Πn has
m object evolution rules of the form [a→ w]αh , where m is polynomial in n.

The right-hand side of each rule can be recovered by evaluating the predi-
cate evolution(1n, h, α, a, i, j, b), which is true when the i-th rule of the form
[a→ w]αh (under any chosen, fixed total order of the rules) has wj = b (and is
false for j ≥ |w|). Once again, |w| must be polynomial in n.

Other kinds of rules. The following predicates describe the communication,
dissolution and elementary division rules of Πn:

send-in(1n, h, α, a, β, b) ⇐⇒ a []αh → [b]βh ∈ R;
send-out(1n, h, α, a, β, b) ⇐⇒ [a]αh → []βh b ∈ R;
dissolve(1n, h, α, a, b) ⇐⇒ [a]αh → b ∈ R;
elem-divide(1n, h, α, a, β, b, γ, c) ⇐⇒ [a]αh → [b]βh [c]γh ∈ R

and h is elementary.

These predicates completely describe a mapping 1n 7→ Πn for every n ∈ N.

Definition 5. The mapping 1n 7→ Πn is said to be DLOGTIME-computable if
all the predicates labels, alphabet, outermost, inside, input, multiset,
#evolution, evolution, send-in, send-out, dissolve, and elem-divide
are DLOGTIME-computable.

Each P system Πn will be used to process all inputs x ∈ Σn, once they have
been suitably encoded as a multiset wx over the input alphabet of Πn.

Input multiset. The predicate encoding(x, i, a) holds when the i-th object
of the input multiset encoding x is a (the predicate is false if there is no i-th
object). The multiset size must be polynomial with respect to n = |x|.
Definition 6. The mapping x 7→ wx is said to be DLOGTIME-computable iff
the predicate encoding is DLOGTIME-computable.

We are now finally able to define (DLOGTIME,DLOGTIME)-uniform (or
(DLT,DLT)-uniform for brevity) families of P systems according to Definition 2.

4 Simulating Logspace Turing Machines

In this section we prove that logarithmic-space Turing machines can be simulated
by logarithmic-space families of P systems with active membranes even if we use
a (DLT,DLT) uniformity condition.

8 A.E. Porreca, A. Leporati, G. Mauri, C. Zandron

Theorem 1. Let M be a deterministic Turing machine with an input tape (of
length n) and a work tape of length O(log n). Then, there exists a (DLT,DLT)-
uniform family Π of confluent recogniser P systems with active membranes work-
ing in logarithmic space such that L(M) = L(Π).

Proof. Let s(n) = k log n be an upper bound on the length of the work tape of
the Turing machine M , let Σ be the alphabet of M (including the blank symbol
t) and Q its set of non-final states. Also, for all n ∈ N, let `(n) be the minimum
number of bits required in order to represent the integers {0, . . . , n− 1}, that is,
`(n) = blog(n− 1)c+ 1.

The initial configuration of Πn, the P system simulating M on inputs of
length n, consists of:

– An outermost membrane labelled by h. This membrane contains the object
q0,0, whose subscripts are written using `(n) and `(s(n)) bits respectively.
This is called the state object. In general, the existence of the object qi,w for
some q ∈ Q and i, w ∈ N indicates that the simulated Turing machine M is
currently in state q and its tape heads are located on the i-th symbol on the
input tape and on the w-th symbol of the work tape.

– `(n) nested membranes labelled by i0, . . . , i`(n)−1 (where the subscripts are
all represented in binary with exactly `(`(n)) bits), called the input tape
membranes. The innermost membrane i0 is the input membrane of Πn.

– s(n)membranes placed inside h and labelled by w0, . . . , ws(n)−1 (using `(s(n))
bits for the subscripts), called the work tape membranes. Each membrane ww
initially contains the object t, indicating that the w-th cell of the work tape
of M is blank.

– Two sets of membranes {ai : a ∈ Σ} and {aw : a ∈ Σ}, placed inside h

and respectively called input tape symbol membranes and work tape symbol
membranes.

The input x ∈ Σ? of Πn is encoded as a multiset by subscripting each symbol
with its position inside x, counting from 0 and using `(n) bits. This multiset is
then placed inside membrane i0. (See Fig. 1.)

Now assume that a few steps of M have been simulated by Πx. The current
configuration of the P system will be similar to the initial one, except that
the initial state object q0,0 is replaced by some qi,w (with q ∈ Q, 0 ≤ i < n,
0 ≤ w < s(n)) and the membranes w0, . . . , ws(n)−1 contain objects corresponding
to the symbols on the work tape of M . (See Fig. 2.)

The state object now enters the membranes i`(n)−1, . . . , i0 in that order; at
the same time, it sets the charge of membrane ij to negative, if the j-th least
significant bit (counting from 0) of its subscript i is 0, and to positive if that bit
is 1. The following rules are used in order to perform this process:

qi,w []0ij → [qi,w]
−
ij

if the j-th least significant bit of i is 0 (1)

qi,w []0ij → [qi,w]
+
ij

if the j-th least significant bit of i is 1. (2)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), 0 < j < `(n).

Sublinear-Space P Systems with Active Membranes 9

For the innermost membrane i0 instead we use the following rules, which
add a binary counter of `(n) bits (starting from 0) as a superscript to the state
object:

qi,w []0i0 → [q0i,w]
−
i0

if the least significant bit of i is 0 (3)

qi,w []0i0 → [q0i,w]
+
i0

if the least significant bit of i is 1. (4)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n).
When membrane i0 becomes non-neutral, the input objects ai (for 0 ≤ i < n)

are sent out. Membranes i0, . . . , i`(n)−1 behave as “filters” in the following sense:
object ai may pass through ij only if the charge of the membrane corresponds
to the j-th bit of i (where positive denotes a 1, and negative a 0). Exactly
one input object will traverse all of them and reach the outermost membrane,
namely, the object corresponding to the symbol under the tape head in the
current configuration of M , whose position on the input tape is represented by
the subscript i of the object qi,w. Indeed, it is never the case that two or more
input objects reach the outermost membrane, since the subscripts of the input
symbols are unique (i.e., no two input objects ai1 , ai2 have identical bits in all
`(n) positions of their subscripts); moreover, one of them always does, since
the simulated Turing machine, being a legitimate one, has a symbol under its
input tape head at all times. The time required for the correct input object to
reach the outermost membrane depends on the nondeterministic order in which
the objects are sent out from the membranes i0, . . . , i`(n)−1; in the following
discussion we use a worst-case upper bound of n2 + `(n) + 1.

Formally, the required rules are:

[ai]
−
ij
→ []−ij ai if the j-th bit of i is 0 (5)

[ai]
+
ij
→ []+ij ai if the j-th bit of i is 1. (6)

These rules are replicated for all a ∈ Σ, 0 ≤ i < n, 0 ≤ j < `(n).
The single object that reaches the outermost membrane h is then used in

order to set to positive the charge of the corresponding membrane ai (thus
signalling that the symbol under the input tape head is a):

ai []
0
ai → [ai]

0
ai (7)

[ai]
0
ai → []+ai ai (8)

These rules are replicated for all a ∈ Σ, 0 ≤ i < n.
The number of steps required for these operations to be carried out (starting

from the moment membrane i0 becomes non-neutral) is bounded by n
2 +`(n)+1.

During this time, the head object waits inside i0 by using the following rules:

[qti,w → qt+1
i,w]αi0 for 0 ≤ t < n

2
+ `(n) + 1 (9)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), α ∈ {+,−}.
(See Fig. 3.)

10 A.E. Porreca, A. Leporati, G. Mauri, C. Zandron

When the superscript t reaches n
2 + `(n)+ 1, the state object travels back to

membrane h while resetting the charges of i0, . . . , i`(n)−1 to neutral:

[q
n
2 +`(n)+1
i,w]αi0 → []0i0 q

′
i,w (10)

[q′i,w]
α
ij
→ []0ij q

′
i,w (11)

[q′i,w]
α
i`(n)−1

→ []0i`(n)−1
q0i,w (12)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), 0 < j < `(n)−1,
α ∈ {+,−}.

When membranes ij revert to neutral, the input objects ai are sent back in,
all the way to the input membrane h0:

ai []
0
ij
→ [ai]

0
ij

(13)

These rules are replicated for all 0 ≤ i < n, 0 ≤ j < `(n), a ∈ Σ.
Once again, the state object waits n

2 + `(n)+1 steps (this time, inside mem-
brane h) for this process to complete:

[qti,w → qt+1
i,w]0h for 0 ≤ t < n

2
+ `(n) + 1 (14)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n).
The time required up to now is O

(
n
2 + `(n)

)
= O(n) steps. The remainder

of the simulation of the current step of M will only require a constant number
of steps. First, the state object q

n
2 +`(n)+1
i,w enters membrane ww and changes its

charge, thus causing the object a inside it to be sent out.

q
n
2 +`(n)+1
i,w []0ww → [q′′i,w]

+
ww

(15)

[a]+ww → []−ww a (16)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a ∈ Σ.
When the charge of ww becomes negative, the state object is sent out to h,

while object a enters the corresponding membrane aw and sets its charge to
positive.

[q′′i,w]
−
ww
→ []−ww q′′i,w (17)

a []0aw → [a]+aw (18)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a ∈ Σ.
Now the configuration of Πx (see Fig. 4) has the following properties:

– Exactly one membrane among w0, . . . , ws(n)−1 is negatively charged (this is
the membrane corresponding to the work tape cell currently scanned by M)
while the others are neutral.

– Exactly one membrane ai is positively charged (the one corresponding to
the input tape symbol currently read by M), while bi is neutral for all
b ∈ Σ − {a}.

Sublinear-Space P Systems with Active Membranes 11

– Exactly one membrane aw is positively charged (the one corresponding to the
work tape symbol currently read byM), while bw is neutral for all b ∈ Σ−{a}.

While the object a inside membrane aw is deleted by the following rule,
replicated for all a ∈ Σ:

[a→ λ]+aw (19)

the state object can identify the symbols currently read by M by checking the
charges of the corresponding membranes (resetting them to neutral), and store
those symbols as superscripts:

q′′i,w []+ai → [q′′i,w]
+
ai (20)

[q′′i,w]
+
ai → []0ai q

a
i,w (21)

qai,w []+bw → [qai,w]
+
bw

(22)

[qai,w]
+
bw
→ []0bw q

a,b
i,w (23)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a, b ∈ Σ.
Now the state object possesses all the information needed in order to simu-

late the transition of M , namely, the state itself and the two symbols currently
scanned by the Turing machine. Let

δ : Q×Σ2 → Q×Σ × {+1,−1}2

be the transition function of M ; here we assume δ is only defined for non-final
states, and that the head movements are represented by ±1. Assume that

δ(q, a, b) = (r, c, d1, d2).

Then, the following rules produce the object representing the new work tape
symbol that replaces a:

[qa,bi,w → q̂a,bi,w c
′]0h (24)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a, b ∈ Σ.
The object c′ is sent to the membrane simulating the tape cell it is written

on, i.e., the only negatively charged membrane ww, and it resets its charge to
neutral (while losing the prime):

c′ []−ww → [c]0ww (25)

This rule is replicated for all 0 ≤ w < s(n), c ∈ Σ.
Simultaneously, the state object has to update three pieces of information

(state and positions on the tapes) in order to complete the simulation of the
current step of M :

[q̂a,bi,w → ri′,w′]
0
h where i′ = i+ d1, w′ = w + d2 (26)

12 A.E. Porreca, A. Leporati, G. Mauri, C. Zandron

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a, b ∈ Σ.
The configuration of Πx now encodes the configuration of M after having

simulated the step performed by the Turing machine in O(n) time. The simula-
tion may now proceed with the next step of M .

If M reaches an accepting state q, then the following rule is applied:

[qi,w]
0
h → []0h yes (27)

while the following one is applied for a rejecting state:

[qi,w]
0
h → []0h no (28)

These rules are replicated for all 0 ≤ i < n, 0 ≤ w < s(n).
This completes the description of the family of P systemsΠ = {Πx : x ∈ Σ?}

simulatingM . Each P systemΠx only requires O(log |x|)membranes and objects
besides the input objects (and these are not modified nor created during the
computation). The time required by the simulation is O

(
n · t(n)

)
, where t(n) is

the maximum number of steps performed by M on inputs of length n.
In order to prove Theorem 1 we still need to show that the family Π is indeed

(DLT,DLT)-uniform. Here we provide a proof sketch for this result.
Consider the mapping x 7→ wx, encoding each input string ofM as a multiset

over the alphabet of Πn (with n = |x|): each symbol of x has to be subscripted
with an index of `(n) bits representing its position in x. The corresponding
encoding predicate is

encoding(x, i, aj) ⇐⇒ j = i ∧ xi = a.

It is easy to check in DLOGTIME if the predicate holds for each (x, i, aj). First,
we copy the portions of the input representing i and aj (of length O(log n)) on
auxiliary work tapes and we check if the third argument is indeed of the form
aj for some a ∈ Σ by simulating a finite state automaton. By scanning i and
j we can ensure that i = j. Then, we extract the i-th symbol of x by copying
i on the address tape of the machine, and we check if that symbol is a. Since
symbol-by-symbol comparisons require linear time with respect to the length of
the strings, the evaluation of encoding can be carried out in logarithmic time.

The alphabet of Πn can be represented by using O(`(n)) bits, where the
hidden constants also depend on the size of the alphabet Σ ofM . For simplicity,
we can use k · `(n) for some appropriate k as an upper bound, and set

alphabet(1n,m) ⇐⇒ m = k · `(n).

This predicate can be checked in DLOGTIME, as multiplication by a con-
stant can be implemented by repeated additions. The reasoning for the predicate
labels is similar.

Sublinear-Space P Systems with Active Membranes 13

The membrane structure of Πn (see Fig. 1 for an example with n = 5) is
described as follows:

outermost(1n, h) ⇐⇒ h = h

inside(1n, h1, h2) ⇐⇒ (h1 = i`(n)−1 ∧ h2 = h) ∨
(h1 = ij ∧ h2 = ij+1 ∧ 0 ≤ j < `(n)− 1) ∨
(h1 = wj ∧ h2 = h ∧ 0 ≤ j < s(n)) ∨
(h1 = ai ∧ h2 = h ∧ a ∈ Σ) ∨
(h1 = aw ∧ h2 = h ∧ a ∈ Σ)

that is, by a disjunction of a constant number of conjuncts, each one consisting
of a constant number of terms whose truth can be verified in DLOGTIME by
executing comparisons or simple computations on numbers of O(log n) bits. The
input membrane is identified by

input(1n, h) ⇐⇒ h = i0.

The initial multisets are described by

multiset(1n, h, i, a) ⇐⇒ (h = h ∧ i = 0 ∧ a = q0,0) ∨
(h = wj ∧ i = 0 ∧ a = t ∧ 0 ≤ j < s(n))

which is also decidable in DLOGTIME.
We shall not describe in detail the predicates for the rules of Πx. As an

example, consider the rules of kind (14) on page 10:

[qti,w → qt+1
i,w]0h for 0 ≤ t < n

2
+ `(n) + 1

It is easy to see that

#evolution(1n, h, 0, a, 1)

holds for a = qti,w, q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), 0 ≤ t < n
2 + `(n) + 1; this is

one of the conjuncts of the full definition of #evolution. The value n
2 +`(n)+1

can be computed from 1n in DLOGTIME. The part of the predicate evolution
dealing with rules of kind (14)

evolution(1n, h, 0, qti,w, 0, j, b)

then holds when j = 0 and b = qt+1
i,w , and this can be checked in DLOGTIME

as described before.
The full definition of evolution (and of all the other predicates for the rules

of Πn) is a disjunction of a constant number of conjuncts (each one dealing with
a different kind of evolution rules, depending on the elements on the left-hand
side of the rule) where each conjunct can be checked in DLOGTIME. ut

An immediate corollary of Theorem 1 is that the class of problems solved by
logarithmic-space Turing machines is contained in the class of problems solved
by (DLT,DLT)-uniform, logarithmic-space P systems with active membranes.

Corollary 1. L ⊆ (DLT,DLT)-LMCSPACEAM. ut

14 A.E. Porreca, A. Leporati, G. Mauri, C. Zandron

a000 b001 b010 a011 a100

q000,00

aww00

w01

w10

bw

tw

ai

bi

ti

i00

i01

i10

h

0
0

0 0

0

0 0

0

0 0

0

0

0

t

t

t

Fig. 1. The initial configuration of Πx, that is Πn with n = 5 and input x = abbaa,
assumingM uses logn space, has Σ = {a, b,t} as its alphabet and q as its initial state.

a000 b001 b010 a011 a100

r010,01

aww00

w01

w10

bw

tw

ai

bi

ti

i00

i01

i10

h

0
0

0 0

0

0 0

0

0 0

0

0

0

b

a

t

Fig. 2. A possible configuration of the P system Πx (see Fig. 1) simulating the Turing
machine M after a few computation steps have been simulated. Here the current state
ofM is r, the work tape contains the string ba, the input tape head is on cell 2 (binary
010), and the work tape head is on cell 1 (binary 01).

a000

b001

b010

a011

a100

r111010,01
aww00

w01

w10

bw

tw

ai

bi

ti

i00

i01

i10

h

−
+
− 0

0

0 0

+

0 0

0

0

0

b

a

t

Fig. 3. Configuration of Πx (from Fig. 1) after the object b010 (corresponding to the
symbol under the input tape head) has set the charge of membrane bi to positive,
allowing the state-object to identify it.

Sublinear-Space P Systems with Active Membranes 15

a000 b001 b010 a011 a100

r′′010,01

aww00

w01

w10

bw

tw

ai

bi

ti

i00

i01

i10

h

0
0

0 0

−

0 0

+

0 +

0

0

0

b a

t

Fig. 4. Configuration of Πx after the object a has set the charge of membrane aw to
positive, thus identifying the symbol under the work tape head.

5 Conclusions

In this paper we extended the definition of space complexity for P systems [6] in
order to consider sublinear-space computations and compare them to logarithmic-
space Turing machines.

To ensure that the P systems themselves perform the actual computation
(as opposed to letting the uniformity machine solve the problem), we needed
to weaken the usual polynomial-time uniformity condition (as L ⊆ P). We
showed how a variant of a common uniformity condition for Boolean circuits,
DLOGTIME uniformity, may also be used to define families of P systems with
active membranes.

We were then able to define DLOGTIME-uniform families of P systems
working in logarithmic space and simulating logarithmic-space Turing machines,
thus showing that the former devices are at least as computationally powerful
as the latter ones, in symbols L ⊆ (DLT,DLT)-LMCSPACEAM.

Although the DLOGTIME uniformity condition we proposed, like the AC0

uniformity already considered in the literature [3], is weaker than the usual P
uniformity, it nevertheless seems powerful enough to be applied to many already
published results. Indeed, we conjecture that most previously defined P-uniform
families of P systems can be adapted to DLOGTIME uniformity.

It remains to be established whether (DLT,DLT)-LMCSPACEAM = L, or
if that class includes harder problems like, for instance, those in NL.

Acknowledgements

The authors would like to thank Artiom Alhazov, Luca Manzoni, Niall Murphy,
and Marco S. Nobile for the suggestions they provided. This work was partially
supported by Università degli Studi di Milano-Bicocca, Fondo di Ateneo per la
Ricerca (FAR) 2011.

16 A.E. Porreca, A. Leporati, G. Mauri, C. Zandron

References

1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: The computa-
tional power of exponential-space P systems with active membranes. In: Martínez-
del-Amor, M.A., Păun, Gh., Pérez-Hurtado, I., Romero-Campero, F.J. (eds.) Pro-
ceedings of the Tenth Brainstorming Week on Membrane Computing, vol. I, pp.
35–60. Fénix Editora (2012)

2. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1.
Journal of Computer and System Sciences 41(3), 274–306 (1990)

3. Murphy, N., Woods, D.: The computational power of membrane systems under tight
uniformity conditions. Natural Computing 10(1), 613–632 (2011)

4. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

5. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes
in models of cellular computing with membranes. Natural Computing 2(3), 265–284
(2003)

6. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complexity
measure for P systems. International Journal of Computers, Communications &
Control 4(3), 301–310 (2009)

7. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active mem-
branes working in polynomial space. International Journal of Foundations of Com-
puter Science 22(1), 65–73 (2011)

8. Ruzzo, W.L.: On uniform circuit complexity. Journal of Computer and System Sci-
ences 22(3), 365–383 (1981)

