The algebra of alternation and synchronisation of finite dynamical systems

Antonio E. Porreca • aeporreca.org Aix-Marseille Université \& LIS

The team

Florian Bridoux
Johan Couturier
Alberto Dennunzio

François Doré
Valentina Dorigatti
Enrico Formenti
Caroline Gaze-Maillot

Luca Manzoni
Émile Naquin
Kévin Perrot
Antonio E. Porreca
Sara Riva
Marius Rolland
Ekaterina Timofeeva

Finite, discrete-time dynamical systems Just a finite set with a transition function (A, f)

Finite, discrete-time dynamical systems

 Just a finite set with a transition function (A, f) modulo isomorphism

General shape of a dynamical system

A few limit cycles

General shape of a dynamical system

A few limit cycles with trees going in

General shape of a dynamical system

 A few limit cycles with trees going in
General shape of a dynamical system

A few limit cycles with trees going in

General shape of a dynamical system

A few limit cycles with trees going in

Isomorphism of dynamical systems is easy

2009 24th Annual IEEE Conference on Computational Complexity

Planar Graph Isomorphism is in Log-Space

Samir Datta* ${ }^{*}$, Nutan Limaye ${ }^{\dagger}$, Prajakta Nimbhorkart, Thomas
Email: sdatta@cmi.ac.in
†The Institute of Mathematical Sciences, Chennai
Email: \{nutan,prajakta\}@imsc.res.in
\ddagger Fakultät für Elektronik und Informatik, HTW Aalen
Email: thomas.thierauf@uni-ulm.de
§Institut für Theoretische Informatik, Universität Ulm
für Theoretische Ingormer@uni-ulm.de
Email: fabian.wagner
The problem is clearly in NP and by a group theoretic

Abstract
Graph Isomorphism is the prime example of a computational problem with a wide difference between the bere is known lower and upper bounds lower and upper bounds for a significant gap between We bridge the gap for this natural planar graphs as well. We becial case by presenting an upper bound and important special cas los-space hardness [JKMT®]. In
proof also in SPP [AK06]. This is the current frontier of our knowledge as far as upper bounds go. The inability one give efficient algorithms for the proble hard. NP-hardness to believe that the problem is protes if GI is NP-hard then is precluded by a result that states if GI second level the polynomial time hierarchy collapses surprising is that not even [BHZ87], [Sch88]. What is more sulem. The best we know P-hardness is known for the problem. The class of problems is that GI is hard for Determinant, defined by Cook [Coo85].

Isomorphism of dynamical systems is easy

2009 24th Annual IEEE Conference on Computational Complexity
Samir Datta* ${ }^{*}$ Nutan Limaye ${ }^{\dagger}$, Prajakta Nimbhorkar ${ }^{\star}$, Thennai Mathematical Institute
Email: sdatta@cmi.ac.in
${ }^{\dagger}$ The Institute of Mathematical
Email: \{nutan,prajakta\}@imatik, HTW Aalen
\ddagger Fakultät für Elektronik Emil: thomas.thierauf@uni-ulm.de
Email: thomas. Informatik, Universität Ulm
§Institut für Theoretische Informatik, Un.de

Graph Isomorphism is the prime example of a computational problem with a wide differencemplexity. There is known lower and upper boundst lower and upper bounds for a significant gap between extant be bridge the gap for this natural planar graphs as well. We bridgeresenting an upper bound and important special case b-space hardness [JKMT93]. In

The problem is clearly in NP and by a group theoretic proof also in SPP [AK06]. This is the current frontier of our knowledge as far as upper bounds go. Thould lead one give efficient algorithms for the provably hard. NP-hardness to believe that the problem is prates if GI is NP-hard then is precluded by a result that states if Ge second level the polynomial time hierarchy collapses ing is that not even [BHZ87], [Sch88]. What is more sublem. The best we know P-hardness is known for the problem. The class of problems is that GI is hard for Determinant, defined by Cook [Coo85]. is that GI is hard the determinant, defined by Costudy of iso-

INTERMISSION

How to efficiently generate dynamical systems, aka functional digraphs

How to efficiently generate dynamical systems, aka functional digraphs

- In theory: Antonio E. Porreca, Ekaterina Timofeeva, Polynomial-delay generation of functional digraphs up to isomorphism, arXiv:2302.13832

How to efficiently generate dynamical systems, aka functional digraphs

- In theory: Antonio E. Porreca, Ekaterina Timofeeva, Polynomial-delay generation of functional digraphs up to isomorphism, arXiv:2302.13832
- In practice: funkdigen2, a fast implementation of the above, github.com/aeporreca/funkdigen2

A toy example from engineering

Traffic lights

A toy example from science

A planetary system

A planetary system

Evolution in time

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

What if our instruments are less sophisticated?

Abstract evolution of the system

Abstract evolution of the system

Product of dynamical systems

Product of systems

Give temporary names to the states

$=$

Compute the

 Cartesian product

 Cartesian product}

Add the arcs between states

Forget the names once again

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

more precisely: a connected A is a minor of each connected component of $A \times B$ for $B \neq 0$

Back to our

planetary system

Decomposition

Decomposition

Decomposition

Any other decomposition?

Another decomposition

Another decomposition

Another decomposition

More concretely...

More concretely...

6 months

More concretely...

More concretely...

6 months

Untangling complex systems

Traffic lights at a crossroads

More abstractly...

\square

The operations + and \times are a commutative semiring

The operations + and \times are a commutative semiring

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$

The operations + and \times are a commutative semiring

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$

The operations + and \times are a commutative semiring

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$
- Neutral elements: $\varnothing+X=X$ and $8 \times X=X$

The operations + and \times are a commutative semiring

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$
- Neutral elements: $\varnothing+X=X$ and $8 \times X=X$
- Distributive: $X \times(Y+Z)=X \times Y+X \times Z$

The operations + and \times are a commutative semiring

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$
- Neutral elements: $\varnothing+X=X$ and $8 \times X=X$
- Distributive: $X \times(Y+Z)=X \times Y+X \times Z$
- Multiplication by zero: $\varnothing \times X=\varnothing$

The inspiration

The category of endomaps of sets

Conceptual Mathematics
A first introduction to categories Second Edition
F. William Lawere Stephen H. Schanuel

Multiplication table

Equations for

decomposing systems

Eqns over dynamical systems

Eqns over dynamical systems

$$
\begin{aligned}
& \overbrace{6}^{9} X+Y^{2}={ }_{6}^{9} \\
& X=\$_{6} \\
& Y=\Omega \\
& Z=0
\end{aligned}
$$

\mathbb{N} is a subsemiring of \mathbf{D}

- There is an injective homomorphism $\varphi: \mathbb{N} \rightarrow \mathbf{D}$

$$
\varphi(n)=\underbrace{\mathbf{1}+\mathbf{1}+\cdots+\mathbf{1}}_{n \text { times }}=\underbrace{\bigcirc_{!}+\bigcap_{!}+\cdots+\complement_{!}}_{n \text { times }}
$$

- n fixed points behave exactly as the integer n
- So \mathbf{D} contains a isomorphic copy of \mathbb{N}

Natural polynomial equations

- Let $p(X, Y)=2 X^{2}$ and $q(X, Y)=3 Y$ with $p, q \in \mathbb{N}[X, Y] \leq \mathbf{D}[X, Y]$
- Then $2 X^{2}=3 Y$ has the non-natural solution

$$
X=
$$

- But, of course, it also has the natural solution $X^{\prime}=3, Y^{\prime}=6$
- Notice how $X^{\prime}=|X|$ and $Y^{\prime}=|Y|$
- This is not a coincidence!

The function "size" $|\cdot|: \mathbf{D} \rightarrow \mathbb{N}$ It's a semiring homomorphism

- $|\varnothing|=0$
- $|\Omega|=1$
- Since + is the disjoint union, we have

$$
|A+B|=|A|+|B|
$$

- Since \times is the cartesian product, we have

$$
|A B|=|A| \times|B|
$$

Notation for polynomials $p \in \mathbf{D}[\vec{X}]$

 Of degree $\leq d$ over the variables $\vec{X}=\left(X_{1}, \ldots, X_{k}\right)$$$
\begin{aligned}
& p=\sum_{\vec{i} \in\{0, \ldots, d\}^{k}} a_{\vec{i}} \overrightarrow{X^{i}} \\
& \text { where } \quad \vec{X}^{\vec{i}}=\prod_{j=1}^{k} X_{j}^{i_{j}}
\end{aligned}
$$

Theorem

Solvability of natural equations

- If a polynomial equation over $\mathbb{N}\left[X_{1}, \ldots, X_{k}\right]$ has a solution in \mathbf{D}^{k}, then it also has a solution in \mathbb{N}^{k}
- In the larger semiring \mathbf{D} we may find extra solutions, but only if the equation is already solvable over the naturals
- Then, by reduction from Hilbert's 10th problem, we obtain the undecidability in \mathbf{D} of equations over $\mathbb{N}[\vec{X}] \ldots$
- ...and thus of arbitrary equations over $\mathbf{D}[\vec{X}]$

Proof

Consider $p(\vec{X})=q(\vec{X})$ with $p, q \in \mathbb{N}[\vec{X}]$

$$
\sum_{\{0, \ldots, d\}^{k}} a_{\vec{i}} \vec{X}^{\vec{i}}=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \overrightarrow{X^{\vec{i}}}
$$

Proof

Suppose that $\vec{A} \in \mathbf{D}^{k}$ is a solution

$$
\sum_{\{0, \ldots, d\}^{k}} a_{\vec{i}} \overrightarrow{A^{i}}=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \overrightarrow{A^{\vec{i}}}
$$

Proof

Apply the size function |•|

$$
\left|\sum_{i \in\{0, \ldots, d\}^{k}} a_{\vec{i}} \vec{A} \vec{i}\right|=\left|\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \vec{A} \vec{i}\right|
$$

Proof

The size function $|\cdot|$ is a homomorphism

$$
\sum_{\left\{\{0, \ldots, d\}^{k}\right.}\left|a_{\vec{i}} \overrightarrow{A^{\vec{i}}}\right|=\sum_{i \in\{0, \ldots, d\}^{k}}\left|b_{\vec{i}} \overrightarrow{A^{i}}\right|
$$

Proof

The size function $|\cdot|$ is a homomorphism

Proof

The coefficients are natural

$$
\sum_{\{0, \ldots, d\}^{k}} a_{\vec{i}}\left|\overrightarrow{A^{i}}\right|=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}}\left|\overrightarrow{A^{i}}\right|
$$

Proof

We have $\overrightarrow{A^{i}}=\prod_{j=1}^{k} A_{j}^{i_{j}}$

Proof

The size function $|\cdot|$ is a homomorphism

Proof

The size function $|\cdot|$ is a homomorphism

Proof

So $|\vec{A}|=\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)$ is also a solution, QED

$$
p\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)=q\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)
$$

Bad news about solving equations !

Bad news about solving equations !

- There is no algorithm at all for solving general equations

4 Bad news about

 solving equations !- There is no algorithm at all for solving general equations
- Equations without variables on one side admit an algorithm, but even linear ones of this form are NP-complete:

$$
A_{1} X_{1}+A_{2} X_{2}+\cdots+A_{n} X_{n}=B
$$

4. Bad news about

solving equations !

- There is no algorithm at all for solving general equations
- Equations without variables on one side admit an algorithm, but even linear ones of this form are NP-complete:

$$
A_{1} X_{1}+A_{2} X_{2}+\cdots+A_{n} X_{n}=B
$$

- We are still unsure if equations in one single variable, like $A X=B$, can be solved efficiently (conjecture: no)

Reducibility of dynamical systems

Most dynamical systems are irreducible

- Formally:

- Notice that this is the opposite of \mathbb{N}, where irreducible (aka prime) integers are scarce

No unique factorisation into irreducibles!

Multiple factorisations

\times

Multiple factorisations

Multiple factorisations

Prime systems

Prime systems

- A prime is a system P such that, whenever it appears in a factorisation into irreducibles of $A \times B$, it appears in the factorisation of either A or B

Prime systems

- A prime is a system P such that, whenever it appears in a factorisation into irreducibles of $A \times B$, it appears in the factorisation of either A or B
- In other words, if P divides $A \times B$ then it divides A or B

Prime systems

- A prime is a system P such that, whenever it appears in a factorisation into irreducibles of $A \times B$, it appears in the factorisation of either A or B
- In other words, if P divides $A \times B$ then it divides A or B
- If a prime appears in one factorisation of a system, then it appears in all the others as well (it is irreplaceable)

An example of nonprime

Finding primes

Finding primes

- We haven't been able to find even a single prime yet!

Finding primes

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though

Finding primes

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though
- This guy here? it is not prime

Finding primes

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though
- This guy here? it is not prime
- A counterexample to the primality of P is two systems A, B such that P divides $A \times B$ but neither A nor B

Finding primes

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though
- This guy here? it is not prime It took us two years to find out that
- A counterexample to the primality of P is two systems A, B such that P divides $A \times B$ but neither A nor B
- Those A and B can be bigger than P, but we don't know how much, so no algorithm yet...

What do primes look like, if they exist at all?

What do primes look like, if they exist at all?

What do primes look like, if they exist at all?

- Connected

What do primes look like, if they exist at all?

- Connected
- Fixed point (no cycles of length >1)

What do primes look like, if they exist at all?

- Connected
- Fixed point (no cycles of length > 1)
- gcd of the number of predecessors across all states must be 1

Future developments

Future developments

- Find more solvable equations, and at least one class of equations that is solvable efficiently

Future developments

- Find more solvable equations, and at least one class of equations that is solvable efficiently
- How many solutions for a given equation?
E.g., $A X=B$ has at most one if X is connected (recent result by É. Naquin and M. Gadouleau)

Future developments

- Find more solvable equations, and at least one class of equations that is solvable efficiently
- How many solutions for a given equation?
E.g., $A X=B$ has at most one if X is connected (recent result by É. Naquin and M. Gadouleau)
- Find out if prime systems exist, or at least find a primality algorithm!

Bibliography

- A. Dennunzio, V. Dorigatti, E. Formenti, L. Manzoni, A.E. Porreca, Polynomial equations over finite, discrete-time dynamical systems
- F. Doré, E. Formenti, A.E. Porreca, S. Riva, Algorithmic reconstruction of discrete dynamics (and its bibliography)
- É. Naquin, M. Gadouleau, Factorisation in the semiring of finite dynamical systems
- A.E. Porreca, E. Timofeeva, Polynomial-delay generation of functional digraphs up to isomorphism

Thanks for your attention! Merci de votre attention!

 Any questions?