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Finite, discrete-time dynamical systems
Just a finite set with a transition function (A, f )

1

2

3

0

4

5

f

f

f f

f

f



Finite, discrete-time dynamical systems
Just a finite set with a transition function  modulo isomorphism(A, f )
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Isomorphism of dynamical 
systems is easy
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Abstract

Graph Isomorphism is the prime example of a compu-

tational problem with a wide difference between the best

known lower and upper bounds on its complexity. There is

a significant gap between extant lower and upper bounds for

planar graphs as well. We bridge the gap for this natural

and important special case by presenting an upper bound

that matches the known log-space hardness [JKMT03]. In

fact, we show the formally stronger result that planar graph

canonization is in log-space. This improves the previously

known upper bound of AC1 [MR91].

Our algorithm first constructs the biconnected component

tree of a connected planar graph and then refines each

biconnected component into a triconnected component tree.

The next step is to log-space reduce the biconnected planar

graph isomorphism and canonization problems to those

for 3-connected planar graphs, which are known to be

in log-space by [DLN08]. This is achieved by using the

above decomposition, and by making significant modifica-

tions to Lindell’s algorithm for tree canonization, along with

changes in the space complexity analysis.

The reduction from the connected case to the biconnected

case requires further new ideas, including a non-trivial case

analysis and a group theoretic lemma to bound the number

of automorphisms of a colored 3-connected planar graph.

This lemma is crucial for the reduction to work in log-space.

1. Introduction

The graph isomorphism problem GI consists of deciding

whether there is a bijection between the vertices of two

graphs, which preserves the adjacency relations. The wide

gap between the known lower and upper bounds has kept

alive the research interest in GI.

‡Supported by DFG grants Scho 302/7-2.

§Supported by DFG grants TO 200/2-2.

The problem is clearly in NP and by a group theoretic

proof also in SPP [AK06]. This is the current frontier of

our knowledge as far as upper bounds go. The inability to

give efficient algorithms for the problem would lead one

to believe that the problem is provably hard. NP-hardness

is precluded by a result that states if GI is NP-hard then

the polynomial time hierarchy collapses to the second level

[BHZ87], [Sch88]. What is more surprising is that not even

P-hardness is known for the problem. The best we know

is that GI is hard for DET [Tor04], the class of problems

NC1-reducible to the determinant, defined by Cook [Coo85].

While this enormous gap has motivated a study of iso-

morphism in general graphs, it has also induced research in

isomorphism restricted to special cases of graphs where this

gap can be reduced. Tournaments are an example of directed

graphs where the DET lower bound is preserved [Wag07],

while there is a quasi-polynomial time upper bound [BL83].

Trees are an example of graphs where the lower and

upper bounds match and are L [Lin92]. Note that for trees,

the problem’s complexity crucially depends on the input

encoding: if the trees are presented as strings then the lower

and upper bound are NC1 [MJT98], [Bus97]). Lindell’s log-

space result has been extended to partial 2-trees, also known

as generalized series-parallel graphs [ADK08]. Trees and

partial 2-trees are special cases of planar graphs.

In this paper we consider planar graph isomorphism and

settle its complexity by significantly improving the known

upper bound of AC1 . The result is particularly satisfying,

because Planar Graph Isomorphism turns out to be complete

for a well-known and natural complexity class, namely log-

space: L.
Planar Graph Isomorphism has been studied in its own

right since the early days of computer science. Wein-

berg [Wei66] presented an O(n2) algorithm for testing

isomorphism of 3-connected planar graphs. Hopcroft and

Tarjan [HT74] extended this to general planar graphs, im-

proving the time complexity to O(n log n). Hopcroft and

Wong [HW74] further improved it to O(n). Recently Kuk-

luk, Holder, and Cook [KHC04] gave an O(n2) algorithm
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What if our instruments 
are less sophisticated?
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Abstract evolution 
of the system
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Abstract evolution 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Product of 
dynamical systems
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Product of systems
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Give temporary names 
to the states

c
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Compute the 
Cartesian product
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Add the arcs between states
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Forget the names once again
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Products “preserve” behaviours
 is a minor of  for A A × B B ≠ ∅
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more precisely: a connected  
is a minor of each connected 
component of  for 

A

A × B B ≠ 0



Back to our 
planetary system
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Decomposition
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Any other 
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Another decomposition
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Untangling complex 
systems
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Traffic lights at a crossroads

+ +
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More abstractly…
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The operations  and  are 
a commutative semiring
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The operations  and  are 
a commutative semiring

+ ×

• Commutative:  and X + Y = Y + X X × Y = Y × X

• Associative:  and X + (Y + Z) = (Y + X) + Z
X × (Y × Z) = (Y × X) × Z

• Neutral elements:  and ∅ + X = X × X = X

• Distributive: X × (Y + Z) = X × Y + X × Z

• Multiplication by zero: ∅ × X = ∅
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Multiplication table
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⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3

41



Equations for 
decomposing systems
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Eqns over dynamical systems

X + Y2 = Z +
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Eqns over dynamical systems

X + Y2 = Z +

X = Y = Z =

43



 is a subsemiring of ℕ D

• There is an injective homomorphism 





•  fixed points behave exactly as the integer 


• So  contains a isomorphic copy of 

φ : ℕ → D

φ(n) = 1 + 1 + ⋯ + 1
n times

= + + ⋯+
n times

n n

D ℕ

44



Natural polynomial equations

• Let  and  with 



• Then  has the non-natural solution


          


• But, of course, it also has the natural solution , 


• Notice how  and 


• This is not a coincidence!

p(X, Y ) = 2X2 q(X, Y ) = 3Y
p, q ∈ ℕ[X, Y] ≤ D[X, Y]

2X2 = 3Y

X = Y = 2

X′￼ = 3 Y′￼ = 6

X′￼ = |X | Y′￼ = |Y |

45



• 


•      


• Since  is the disjoint union, we have





• Since  is the cartesian product, we have


|∅ | = 0

| | = 1

+

|A + B | = |A | + |B |

×

|AB | = |A | × |B |

It’s a semiring homomorphism
The function “size” | ⋅ | : D → ℕ



Of degree  over the variables ≤ d ⃗X = (X1, …, Xk)
Notation for polynomials p ∈ D[ ⃗X ]

p = ∑
⃗i∈{0,…,d}k

a ⃗i
⃗X ⃗i

where ⃗X ⃗i =
k

∏
j=1

Xij
j



• If a polynomial equation over  has a solution 
in , then it also has a solution in 


• In the larger semiring  we may find extra solutions, 
but only if the equation is already solvable over the naturals


• Then, by reduction from Hilbert’s 10th problem, we obtain 
the undecidability in  of equations over …


• …and thus of arbitrary equations over 

ℕ[X1, …, Xk]
Dk ℕk

D

D ℕ[ ⃗X ]

D[ ⃗X ]

Solvability of natural equations
Theorem



Proof
Consider  with p( ⃗X ) = q( ⃗X ) p, q ∈ ℕ[ ⃗X ]

∑
i∈{0,…,d}k

a ⃗i
⃗X ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗X ⃗i



Proof
Suppose that  is a solution⃗A ∈ Dk

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i



Proof
Apply the size function | ⋅ |

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i



Proof
The size function  is a homomorphism| ⋅ |

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i



∑
i∈{0,…,d}k

|a ⃗i | | ⃗A ⃗i | = ∑
i∈{0,…,d}k

|b ⃗i | | ⃗A ⃗i |

Proof
The size function  is a homomorphism| ⋅ |



∑
i∈{0,…,d}k

a ⃗i | ⃗A ⃗i | = ∑
i∈{0,…,d}k

b ⃗i | ⃗A ⃗i |

Proof
The coefficients are natural



∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

Aij
j = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

Aij
j

Proof
We have ⃗A ⃗i = ∏k

j=1 Aij
j



∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

|Aij
j | = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

|Aij
j |

Proof
The size function  is a homomorphism| ⋅ |



∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

|Aj |
ij = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

|Aj |
ij

Proof
The size function  is a homomorphism| ⋅ |



Proof
So  is also a solution, QED| ⃗A | = ( |A1 | , …, |Ak | )

p( |A1 | , …, |Ak | ) = q( |A1 | , …, |Ak | )



⚠ Bad news about 
solving equations ⚠
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• Equations without variables on one side admit 
an algorithm, but even linear ones of this form are 
NP-complete:

A1X1 + A2X2 + ⋯ + AnXn = B
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⚠ Bad news about 
solving equations ⚠

• There is no algorithm at all for solving general equations

• Equations without variables on one side admit 
an algorithm, but even linear ones of this form are 
NP-complete:

A1X1 + A2X2 + ⋯ + AnXn = B

• We are still unsure if equations in one single variable, 
like , can be solved efficiently (conjecture: no)AX = B
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• Formally:





• Notice that this is the opposite of , where irreducible 
(aka prime) integers are scarce

lim
n→∞

number of reducible systems over ≤ n states
total number of systems over ≤ n states

= 0

ℕ

 is irreducible iff  implies  or 

Most dynamical systems are irreducible



No unique factorisation 
into irreducibles!
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Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3
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Multiple factorisations
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a,2

b

a
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Multiple factorisations
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×
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a,1

b,1

a,2

b

a

×
2

1

=
b,1

a,1

b,2

a,2

these two 
are replaceable 
by each other 
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Prime systems

• A prime is a system  such that, whenever it appears 
in a factorisation into irreducibles of , 
it appears in the factorisation of either  or 

P
A × B

A B
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Prime systems

• A prime is a system  such that, whenever it appears 
in a factorisation into irreducibles of , 
it appears in the factorisation of either  or 

P
A × B

A B

• In other words, if  divides  then it divides  or P A × B A B

• If a prime appears in one factorisation of a system, 
then it appears in all the others as well (it is irreplaceable)
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An example of nonprime

× =

× =
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Finding primes
• We haven’t been able to find even a single prime yet!

• We have found infinitely many non-primes though

• This guy here?            It took us two years to find out that 
it is not prime

• A counterexample to the primality of  is two systems  
such that  divides  but neither  nor 

P A, B
P A × B A B

• Those  and  can be bigger than , but we don’t know 
how much, so no algorithm yet…

A B P
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What do primes look like, 
if they exist at all?

• Connected

• Fixed point (no cycles 
of length )> 1

• gcd of the number 
of predecessors across 
all states must be 1
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Future developments

• Find more solvable equations, and at least one class 
of equations that is solvable efficiently

• How many solutions for a given equation? 
E.g.,  has at most one if  is connected 
(recent result by É. Naquin and M. Gadouleau)

AX = B X

• Find out if prime systems exist, or at least find 
a primality algorithm!
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Thanks for your attention!

Merci de votre attention !

Any questions?


