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Finite, discrete-time dynamical systems

Just a finite set with a transition function (A, f)
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Just a finite set with a transition function (A, /) modulo isomorphism
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A few limit cycles
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Isomorphism of dynamical
systems Is easy
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How to efficiently generate dynamical
systems, aka functional digraphs



How to efficiently generate dynamical
systems, aka functional digraphs

* |ntheory: Antonio E. Porreca, Ekaterina Timofeeva,
Polynomial-delay generation of functional digraphs
up to isomorphism, arXiv:2302.13832


https://doi.org/10.48550/arXiv.2302.13832
https://github.com/aeporreca/funkdigen2

How to efficiently generate dynamical
systems, aka functional digraphs

* |n theory: Antonio E. Porreca, Ekaterina Timofeeva,
Polynomial-delay generation of functional digraphs
up to isomorphism, arXiv:2302.13832

e |n practice: funkdigen2, a fast implementation
of the above, github.com/aeporreca/funkdigen2


https://doi.org/10.48550/arXiv.2302.13832
https://github.com/aeporreca/funkdigen2
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What If our instruments
are less sophisticated?



Abstract evolution
of the system
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Product of
dynamical systems



Product of systems
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Give temporary nhames
to the states
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Compute the
Cartesian product

Q\; <& - Q@




Add the arcs between states




Forge
get the names once agai
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Products “preserve” behaviours
Alsaminorof A x Bfor B # @&
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Products “preserve” behaviours
Alsaminorof A x Bfor B # @&

more precisely: a connected A
IS a minor of each connected

component of A X B for B # 0




Back to our
planetary system
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Any other
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Another decomposition
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Another decomposition
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Untangling complex
systems



Traffic lights at a crossroads
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Traffic lights at a crossroads
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Traffic lights at a crossroads
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More abstractly...
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Associative: X + (Y + 7)) = (Y + X) + Z and
XX(YXZ)=(YXX)XZ

Neutral elements: @ + X = Xand @ X X =X
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The operations + and X are
a commutative semiring

Commutative: X + Y=Y+ Xand X X Y =YX X

Associative: X + (Y + 7)) = (Y + X) + Z and
XX(YXZ)=(YXX)XZ

Neutral elements: @ + X = Xand @ X X = X
Distributive: X X (Y +7Z) =X XY+ XX Z
Multiplication by zero: @ X X = ¢

38



The inspiration

The category of endomaps of sets




Multiplication table
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Equations for
decomposing systems



Egns over dynamical systems
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Egns over dynamical systems

’»\/;7X+Y2 Z+./'?
X=£C3 Y=1Q



N is a subsemiring of D

e There is an injective homomorphism @ : N — D

pm)=1+1+--+1= C+ G+ 43,

n times n times

e 1 fixed points behave exactly as the integer n

e So D contains a isomorphic copy of N
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Natural polynomial equations
Let p(X, V) = 2X? and g(X, Y) = 3Y with
p,g EN[X, Y] <D[X, Y]
Then 2X? = 3Y has the non-natural solution

=) r=2 ()
But, of course, it also has the natural solution X' =3, Y = 6
Notice how X' = | X| and V' = | Y|

This Is not a coincidence!

45



The function “size” |- |: D - N

It’'s a semiring homomorphism

. 1@l=0

c1I=1

e Since + is the disjoint union, we have
|A+B[=[A]|+|B]
e Since X is the cartesian product, we have

|AB| = [A]| X |B]



Notation for polynomials p & D[)?]

Of degree < d over the variables X = (X, ..., X})



Theorem

Solvability of natural equations

o If a polynomial equation over N[ X;, ..., X;| has a solution
in D*. then it also has a solution in N¥

* In the larger semiring D we may find extra solutions,
but only if the equation is already solvable over the naturals

* Then, by reduction from Hilbert’s 10th problem, we obtain
the undecidability in D of equations over N[ X |...

e ...and thus of arbitrary equations over D[)?]



Proof
Consider p()?) = q()_() with p, g € N[)?]

Z a;X — b;X
i€{0,...,d}* i€{0,...,d}*



Proof

Suppose that A € D* is a solution

Z a;X?= Z b*A’

i€{0,...,d}* i€{0,..



Proof

Apply the size function | - |

1€1{0,..

LA}k

Y

a-A'’

> b

i€{0,...,d}*

—7

A




Proof

The size function | - | Is a homomorphism

a-A' bh-A'
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Proof

The size function | - | Is a homomorphism

Yo olazl[ATI= Y |b;||AT)

i€{0,...,d}* i€{0,...,d}*



Proof

The coefficients are natural

Y a:| AT = Z b-| A"
d}*

i€{0,...,d}* i€{0,..



Proof

We have A = H;‘_IA;J'

> o
l

i€{0,...,d}*




Proof

The size function | - | Is a homomorphism

k k |
Z H 2 } b;l_! ‘Ajlj‘
i=1 | =

i€{0,...,d}*



Proof

The size function | - | Is a homomorphism

k k |
2 alliar="2, blliar
J=1 Ayt =1

i€{0,...,d}*



Proof

So \X\ = (|A{],...,|A;|) is also a solution, QED

p(‘Al‘aa ‘Ak‘) — Q(‘Al‘aa ‘Ak‘)



. Bad news about
solving equations /!



. Bad news about
solving equations /!

* There is no algorithm at all for solving general equations
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e Equations without variables on one side admit
an algorithm, but even linear ones of this form are
NP-complete:
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. Bad news about
solving equations /!

* There is no algorithm at all for solving general equations

e Equations without variables on one side admit
an algorithm, but even linear ones of this form are
NP-complete:

* We are still unsure if equations in one single variable,
ike AX = B, can be solved efficiently (conjecture: no)
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Reducibility of
dynamical systems



Most dynamical systems are irreducible

 Formally:

. number of reducible systems over < n states 0
11m —
n—oco total number of systems over < n states

* Notice that this is the opposite of N, where irreducible
(aka prime) integers are scarce



No unique factorisation
Into Irreducibles!
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Multiple factorisations
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Multiple factorisations
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Multiple factorisations
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Prime systems

e A prime is a system P such that, whenever it appears
in a factorisation into irreducibles of A X B,
it appears in the factorisation of either A or B
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Prime systems

e A prime is a system P such that, whenever it appears
in a factorisation into irreducibles of A X B,
it appears in the factorisation of either A or B

e |n other words, if P divides A X B then it divides A or B

* |f a prime appears in one factorisation of a system,
then it appears in all the others as well (it is irreplaceable)

6/



An example of nonprime
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Finding primes

* We haven’t been able to find even a single prime yet!
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it is not prime QA{)
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Finding primes
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This guy here? % It took us two years to find out that
it is not prime xb

A counterexample to the primality of P is two systems A, B
such that P divides A X B but neither A nor B
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Finding primes

We haven’t been able to find even a single prime yet!
We have found infinitely many non-primes though

This guy here? % It took us two years to find out that
it is not prime QA{)

A counterexample to the primality of P is two systems A, B
such that P divides A X B but neither A nor B

Those A and B can be bigger than P, but we don’t know
how much, so no algorithm yet...
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e Connected

What do primes look like,
If they exist at all?

"

e Fixed point (no cycles
of length > 1)
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e Connected

What do primes look like,
If they exist at all?

'\\/

e Fixed point (no cycles
of length > 1)

e gcd of the number
of predecessors across

all states must be 1

70
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Future developments

* Find more solvable equations, and at least one class
of equations that is solvable efficiently

e How many solutions for a given equation?

E.g., AX = B has at most one if X is connected
(recent result by E. Naqguin and M. Gadouleau)

 Find out if prime systems exist, or at least find
a primality algorithm!

Ia
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Thanks for your attention!
Merci de votre attention !



