Algebraic analysis of discrete dynamical systems

ACiD Seminar • 8 December 2020

Antonio E. Porreca · aeporreca.org Aix-Marseille Université & LIS · Marseille, France

Finite, discrete-time dynamical systems

Finite, discrete-time dynamical systems

Just a finite set with a transition function (A, f)

Finite, discrete-time dynamical systems

Just a finite set with a transition function (A, f) modulo isomorphism

A few limit cycles

Operations over dynamical systems

Sum of dynamical systems Necessary but not that interesting

• In graph-theoretic terms, it's just the disjoint union

 $(A, f) + (B, g) = (A \uplus B, f + g) \quad \text{with } (f + g)(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}$

- This represents the alternative execution of \boldsymbol{A} and \boldsymbol{B}
- The identity is the empty system $\mathbf{0} = (\emptyset, \emptyset)$

It's a sum of cycles with trees going in

Product of dynamical systems Now we're talking!

• In graph-theoretic terms, it's the tensor product

$$(A, f) \times (B, g) = (A \times B, f \times g)$$

with
$$(f \times g)(a, b) = (f(a), g(b))$$

- This represents the synchronous execution of A and B
- The identity is the singleton system $\mathbf{1} = (\{0\}, id)$

Product in D is graph tensor product Two systems modulo isomorphism

Product in D is graph tensor product

Temporary state names

Product in D is graph tensor product Cartesian product of the states

Product in D is graph tensor product Arrows iff arrows between both components

Product in D is graph tensor product We forget the state names once again

Introducing: the multiplication table, poster-size

×	ç	•	¢٩	0	6	~	20	\$ \$	0.	P	\bigtriangledown	\succ	ł	po	-<	2	<i>\</i> °	17	200	10	000 000	000	po	V	\checkmark	f	50	00	\succ	4
Ŷ	Ş	•	\$ ^{\$}	0	ø	°,	*	\$ \$	0.	P	\bigtriangledown	\succ	f	po	-<	Ż	°,°	4	100	10	999 999	00	fo	V	\succ	f	20	00	\searrow	4
•	•	\succ	*	þ	\star	\checkmark	>	177	f-	\checkmark	\prec	*	\star	\star		×,	4=	\succ	X	V	$r_{r_{f}}$	fr	*	\prec	*	\star	\prec	Y	\mathbf{x}	X
\$ ^{\$}	ଚ୍ଚ	14	600	00	44	e	100	000 000	000	pp	$\bigtriangledown^{\!$	\succ	2 ⁴	× ×	-7<	22	0 0) 0	$r_{r_{f}}$	of too	000	0000 0000	°N°	<i>p\$</i>	$\sqrt[n]{2}$	X	p p	66	0000	P	4
0	D	Þ	00	00	\times	Ì	f=	000	000	\nearrow	\bigcirc	\star	\searrow	\varkappa	X)-	J.	fe	fa	0000	0000	\bigwedge	Ì	X	h		0000	\mathcal{D}	4
þ	Á	\star	م م م	∽	\ast	×	×	1 pr	÷	\searrow	X	₩	\mathbf{x}	*	\mathbf{x}	XX	X	\star	×	\prec^{\star}	44	-4#	$\stackrel{\checkmark}{\rightarrow}$	¥	*	\star	#	\downarrow	*	#
Z	e l	≁⊢	e 1	¢	\times	$\not\prec$	\rightarrow	ell	K	X	\succ	$\stackrel{*}{\downarrow}$	\times	X	\downarrow	X	\rightarrow	+	-7/2/	Ţ	2/1	Ŕ	¥	\succ	\star	-≯≮-	X	ß	\prec	×
¢	10	\succ	100	de-	×	\downarrow)**	00° 0° 0°	100	\downarrow	¥	$\ast^{\!$	×	×	*	1/	-	À	- of the	N.	<u></u>	All's	1	<u>J</u> k⊲	\swarrow	\mathbf{x}	Ŷ	4	X	X
ଚଚ	\$ \$	199	000 000	000	1 pp	0/	000 00 00 00 00 00 00 00 00 00 00 00 00	0000	°00°°	-pp	$\bigtriangledown^{\!$	75	fj.f	er fer	-F	2))	0000	1 ¹ 15	of 100	0°00	00000	°00°°	f.f.	$\stackrel{\forall}{\bigtriangledown}$	À	P _J P	666	0000	44	44
00	l.	J-	op:	000	\times	1	100	°00°°	000	ľ	\bigcirc^{∇}	X	X	×	Ľ	J	大	12	Nho	010	:00°	0000	/X	$\widehat{\mathbb{Q}}_{\mathbb{Q}}$	X		7-	00000	DÞ.	44
P	P	+	ρſ	pP	₩	t	+1	pp	-pp	X	Q	*	×	×	Ť	F	ť	+	th	th	ppp	pp	\Diamond	Þ	\checkmark	+	K	pp	X	л¢-
\bigtriangledown	\bigtriangledown	Y	$\nabla^{\!$	\bigcirc	\mathbf{X}	\checkmark	¥	$\nabla \nabla$	\bigcirc^{∇}	-4	$\bigtriangledown^{\nabla}_{\nabla}$	✻	+	∛	X	L	▼	Å	$\bigvee_{i=1}^{n}$	X0	$\nabla^{\!$	${\rm ext}$	Ŕ	∇^{∇}_{∇}	Å	$\not\succ$	Å	\circ	PA	\bigcirc
\succ	\succ	*	\downarrow	\mathbf{x}	⋇	₩	$\ast^{\!$	15	\Rightarrow	*	*	₩	*K	*	**		**	*	*>	≭*	X	‡∕≻	*	\mathbf{X}	兼	₩	X	XX	**	#
f	ł	X	4ª		*	X	\star^{t}	fi f	-4	*	×	سلا	×	-**	×	×	×	XX	×	-4		长	*	\times	*	¥	¥	-57	¥	*
po	po	\star	2 de	4	*	X	×	a fa fa	-1/2	×	X	\ast^{\succ}	×	×	*	**	XX	**	¥.	*	the free	-\$#_	X	×	*	*	HK_	专	×	#4
\prec	\prec	¥	-7	\prec	$\overset{\star}{\star}$	¥	¥	7	$\prec \prec$	\checkmark	$\dot{\mathbf{x}}$	₩	×¥	${\star}$	**	>,,*≮	4	Ťχ	X	¥	ΞĘ.	-1.2.	X	1×	$\overset{*}{\swarrow}$	₩K	×	\checkmark	×	X
2	2	1×))		X	X	4	222	1)+(\checkmark	*K	×	1	X	X	米	众	괫	X	2222	11	×	X	×	¥,	×	//	¥	X
~~	%	∽⊨	8 e)	<i>f</i> -	×	×	-#:)	000	É	H	$ ightarrow \nabla$	$\stackrel{\text{*}}{}$	×	X	X	×		4	-\$1/)=	0000 0000 0000	1.	-tik	$\sum_{i=1}^{n}$	× ×	×	×	-1/-	¥	1/4
4	1		1777	1	XX	ネ	È	7777 7	1-4	X	$\vec{\mathbf{A}}$	*	××	**	\$	1 ^{tr}	\$	3	X	1/2	$r^{n}_{r}r^{l}_{r}$	- <u> </u> -	T.	₩	$\star^{\!$	¥	χ^{\downarrow}_{r}	AH,	1×t	好
\$\$\$	00	\succ	000 000 000 000 000 000 000 000 000 00	fs	X	\neq_{ll}) and a second	00000000000000000000000000000000000000	A.V.	1	$\neg \overline{\mathbb{V}}$	*5	*	¥.	¥.	뉏	À	X	in the	1 Aug	34 %	0.00	÷.		××	×	左	4-	Abb	4
10	10	V	1700	fs	××	-4	V/2	0110	100	\checkmark	R	$\star^{\!$	XX	X	Ţ*	J.		1/2	Vie	1/2	01170 01170	0110	Æ	Å	¥.	×th	Ł	4-	+a	4
000 000	000	rrr	0000 0000	0000	1/4	4/1	244°°	00000 00000 0000	:00°:	6PP	∇^{∇}_{∇}	75	44	the factor	-74	2,22		1 ¹ 1 ¹ 1	244 68	11000	0000 0000 0000 0000	:00:: :	felp		X	P, P,	f ⁶ 66	000000	AA	4-4- 4-4-
000	00	fr	°N°°	0000	Å	X	Je .	°00°°	0000	/X	$\overline{\bigcirc}^{\nabla}$	X	뿃	×	<u>Ť</u> ź(11	È	- <u> </u> -		000	.000°°	00000	12	$\operatorname{strange}_{\mathrm{V}}$	À	1	1.	000000	DA	4-4- 4-4-
Po	Po	t	p\$	pl_	×	Ť	ŧ	f.f.	Ppl_	\Diamond	Å	×	攵	×	Ť	¥	¥	ŧ	+++	4	festp	/sl/_	$\langle \not k$	Ŕ	× ×	4+	怀	Illa	$\vec{\chi}^{\flat}$	₩ \$
V	V	Å.	$\mathbf{V}_{\mathbf{v}}$	\bigcirc	¥	L	¥.⊽	∇	()	-4	∇^{∇}_{∇}	X	-*	-₩	X	1	.K	÷X	-	An	$\nabla_{\!$		-12	$\mathbb{A}^{\Delta}_{\Delta}$	Å	*	\$	\bigcirc	AA.	4
\succ	\succ	\star	¥	¥	*	$\not\prec$	*	×~	jà-	Y*	X	*	*	*	×	\times	17	*¥	*>	*>	X	X	${\not {}}_{\succ}$	¥,	$*^{\times}$	**	×Ŧ*	X	**	$\not\downarrow^{\!$
P	f	\mathbf{x}	p p	pp	*	¥	\star^{\prime}	Pjp	P _J P	\neq	苁	ى	×	*	¥	¥	¥	\mathbf{x}	+"	t	PjPj	PjPj	乂	¥	$\star^{\!$	$\downarrow \downarrow$	XX	PyPy	芣	4 ^A
10	5	X	20	20	Xt	X	×	666	ورو	TX	Y	XX	×	×-	×	×	X-	17	×	Æ	وفرز	ووو	於	¥-	×*	H	Х×	ووو	X	p X
00	00	1	0000	0000	X	فرفر	4	0000	00000	XX	00	XX	27	X	IT.]/	ル	AH)	1/-	1-	00000	00000	ZXK	e ^o	X	tty	1	00000	02	4-4- 4-4-
\searrow	\mathcal{P}	X	PP	\sim	*	$\succ \downarrow$	X	AAA	$\neg \Diamond^{\triangleright}$	×	AAA	₩	-**	*>	X	¥,	×	XX	XD	-0-X	242	-Obb	$\not \sim \not >$	2AD	₩ţ	¥	7×	-QD-	TY I	\square
4	4	\Rightarrow	4	44	*	4	-\$ ⁴	44	44	Æ	\bigcirc	¥	×	**	X	X	-\$*	4th	44		4-4- 4-4-	4-4- 4-4-	E.	4	+F	44	对	4-4- 4-4-	ϕ	4-4- 4-4-

``	1	`	· · ·	<u>,</u>	
	X	X			
	X				
	XX				
	- t				

Prettier version

The semiring D of dynamical systems

D (modulo isomorphisms) is a semiring Like a ring, without subtraction

- Product is (modulo isomorphism) commutative, associative and has identity $\mathbf{1} = (\{0\}, id)$; so, it's a commutative monoid
- Sum is (modulo isomorphism) commutative, associative and has identity $\mathbf{0} = (\emptyset, \emptyset)$; so, another commutative monoid
- The sum is the free commutative monoid (i.e., the multisets) over the set of connected, nonempty dynamical systems
- We also have a distributive law and the product annihilation law

Motivation

Exploit algebra to decompose large systems

- Many decision problems on dynamical systems are intractable
- We try to make them "less intractable" by reducing the size
- We can deduce certain dynamical properties of complex systems in terms of the dynamics of its components
 - The fixed points of A + B are those of A and those of B
 - The fixed points of $A \times B$ are pairs of fixed points of A and B
 - We can also compute number and lengths of cycles this way

No unique factorisation!

Multiplication table

×	Ø	\bigcirc					C.
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	Ø	\bigcirc					C.
	Ø				**************************************		
	Ø						
	Ø		• • • • • • • • • •				
	Ø						
Contraction of the second seco	Ø	(T					

×	Ø						
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	Ø						
	Ø				•		
	Ø						
	Ø		• • • • • •				
	Ø						

×	Ø				•••		
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	Ø				•••		
	Ø						
	Ø						
	Ø						
	Ø						

×	Ø				••••		
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	Ø				•••		
	Ø				• • • • • • •		
	Ø						
	Ø						
	Ø				• • • • • •		

×	Ø				•••		
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	Ø				•••		CT.
	Ø				•		
	Ø						
•••	Ø	•••					
	Ø				• • • • • •		

No unique factorisation

And the counterexample is minuscule

• Any system with a prime number of states is irreducible, since the state space is a cartesian product

• So • • • • has two distinct factorisations into irreducibles

$$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet$$
Systems with arbitrarily many factorisations

A notable subsemiring

ℕ is a subsemiring of **D** This means trouble

- \mathbb{N} is initial in the category of semirings
- Meaning that there is only one homomorphism $\varphi \colon \mathbb{N} \to \mathbb{D}$

$$\varphi(n) = \underbrace{1 + 1 + \dots + 1}_{n \text{ times}} = \underbrace{\bigcirc + \bigcirc + \dots + \bigcirc}_{n \text{ times}}$$

- In the case of D, the homomorphism is injective, since $(D,\,+\,)$ is the free monoid over connected, nonempty dynamical systems
- So D contains a isomorphic copy of $\mathbb N$

A bit more algebra, of the linear kind

D is a N-semimodule

Like a vector space, but over a semiring

- Here the vectors are dynamical systems and the scalars are naturals
- Trivial because the semimodule axioms are a consequence of $\mathbb N$ being a subsemiring of D:

$$n(A+B) = nA + nB \qquad (m+n)A = mA + nA$$

$$(mn)A = m(nA) \qquad 1A = A \qquad 0A = n\mathbf{0} = \mathbf{0}$$

- D as a semimodule has a unique, countably infinite basis consisting of all nonempty, connected dynamical systems
- The fact that \boldsymbol{D} is a semimodule will be useful later

Irreducible systems

Most dynamical systems are irreducible

A is irreducible iff A = BC implies B = 1 or C = 1

• Formally: $\lim_{n \to \infty} \frac{\text{number of reducible systems over} \le n \text{ states}}{\text{total number of systems over} \le n \text{ states}} = 0$

- The total number of systems over exactly *n* states is asymptotically $\eta \frac{\alpha^n}{\sqrt{n}}$, with $\eta \approx 0.443$ and $\alpha \approx 2.956$
- A reducible system over n states is the product of two systems with p and q states such that pq = n
- With a few summations and upper bounds, we get the result
- Notice that this is the opposite of the subsemiring N

Polynomial equations over $\mathbf{D}[X_1, ..., X_m]$

Polynomial equations over $D[X_1, ..., X_m]$ For the analysis of complex systems

• Consider the equation

$$X + Y^2 = \int Z + \int Z$$

• There is least one solution

$$X = \bigvee Y = \bigvee Z = \bigvee$$

Polynomial equations in semirings As opposed to rings

- A ring has additive inverses (aka, it has subtraction)
- Each polynomial equation in a ring can be written as $p(\vec{X}) = 0$
- This is not the case for our semiring, which has no subtraction
- The general polynomial equation has the form $p(\vec{X}) = q(\vec{X})$ with two polynomials $p, q \in \mathbf{D}[\vec{X}]$

Solvability of polynomial equations over D is undecidable

Undecidability of polynomial equations The spectre of Hilbert's 10th problem is haunting D

- We have showed that $\ensuremath{\mathbb{N}}$ is a subsemiring of D
- But sometimes enlarging the solution space makes the problem actually easier: given $p,q \in \mathbb{N}[\overrightarrow{X}]$
 - Finding if $p(\overrightarrow{X}) = q(\overrightarrow{X})$ has solution in \mathbb{N} is undecidable
 - Finding if $p(\vec{X}) = q(\vec{X})$ has solution in \mathbb{R} is decidable
 - Finding if $p(\overrightarrow{X}) = q(\overrightarrow{X})$ has solution in \mathbb{C} is trivial
- So, what about finding solutions in $\boldsymbol{D}?$

Natural polynomial equations With non-natural solutions

- Let $p(X, Y) = 2X^2$ and q(X, Y) = 3Y with $p, q \in \mathbb{N}[X, Y] \le \mathbf{D}[X, Y]$
- Then $2X^2 = 3Y$ has the non-natural solution

$$X = \bigvee Y = 2 \bigvee$$

- But, of course, it also has the natural solution X' = 3, Y' = 6
- Notice how X' = |X| and Y' = |Y|
- This is not a coincidence!

The function "size" $| \cdot | : D \rightarrow \mathbb{N}$

It's a semiring homomorphism

- $\bullet | \emptyset | = 0$
- | | = 1
- Since + is the disjoint union, we have

$$|A+B| = |A| + |B|$$

• Since X is the cartesian product, we have

$$|AB| = |A| \times |B|$$

Notation for polynomials $p \in \mathbf{D}[\vec{X}]$

Of degree $\leq d$ over the variables $\overrightarrow{X} = (X_1, ..., X_k)$

Notation for polynomials $p \in \mathbf{D}[\vec{X}]$

Of degree $\leq d$ over the variables $\overrightarrow{X} = (X_1, \dots, X_k)$

for instance $(X, Y, Z)^{(2,4,3)} = X^2 Y^4 Z^3$

Theorem Solvability of natural equations

- If a polynomial equation over $\mathbb{N}[X_1, \dots, X_k]$ has a solution in \mathbb{D}^k , then it also has a solution in \mathbb{N}^k
- In the larger semiring ${\bf D}$ we may find extra solutions, but only if the equation is already solvable over the naturals
- Then, by reduction from Hilbert's 10th problem, we obtain the undecidability in **D** of equations over $\mathbb{N}[\overrightarrow{X}]$...
- ...and thus of arbitrary equations over $\mathbf{D}[\vec{X}]$

Proof Consider $p(\vec{X}) = q(\vec{X})$ with $p, q \in \mathbb{N}[\vec{X}]$

 $\sum_{i \in \{0,...,d\}^k} a_{\vec{i}} \overrightarrow{X^i} = \sum_{i \in \{0,...,d\}^k} b_{\vec{i}} \overrightarrow{X^i}$

Proof Suppose that $\overrightarrow{A} \in \mathbf{D}^k$ is a solution

 $\sum_{i \in \{0,...,d\}^k} a_{\vec{i}} \overrightarrow{A^i} = \sum_{i \in \{0,...,d\}^k} b_{\vec{i}} \overrightarrow{A^i}$

Proof Apply the size function | · |

 $\sum_{i \in \{0,...,d\}^k} a_{\vec{i}} \overrightarrow{A^{i}} = \sum_{i \in \{0,...,d\}^k} b_{\vec{i}} \overrightarrow{A^{i}}$

Proof

The size function | · | is a homomorphism

 $\sum_{i \in \{0,...,d\}^k} \left| \overrightarrow{a_i} \overrightarrow{A^i} \right| = \sum_{i \in \{0,...,d\}^k} \left| b_{\overrightarrow{i}} \overrightarrow{A^i} \right|$

Proof

The size function | · | is a homomorphism

$\sum_{i \in \{0,...,d\}^k} |a_{\vec{i}}| |\vec{A}^{\vec{i}}| = \sum_{i \in \{0,...,d\}^k} |b_{\vec{i}}| |\vec{A}^{\vec{i}}|$

Proof The coefficients are natural

$\sum_{i \in \{0,...,d\}^k} a_{\vec{i}} | \overrightarrow{A^i} | = \sum_{i \in \{0,...,d\}^k} b_{\vec{i}} | \overrightarrow{A^i} |$

Proof We have $\vec{A}^{i} = \prod_{j=1}^{k} A_{j}^{i_{j}}$

 $\sum_{i \in \{0,...,d\}^k} a_{\vec{i}} \left| \prod_{j=1}^k A_j^{i_j} \right| = \sum_{i \in \{0,...,d\}^k} b_{\vec{i}} \left| \prod_{j=1}^k A_j^{i_j} \right|$

Proof

The size function | · | is a homomorphism

 $\sum_{i \in \{0,...,d\}^k} a_{\vec{i}} \prod_{j=1}^k |A_j^{i_j}| = \sum_{i \in \{0,...,d\}^k} b_{\vec{i}} \prod_{j=1}^k |A_j^{i_j}|$

Proof

The size function | · | is a homomorphism

 $\sum a_{\vec{i}} \prod |A_j|^{i_j} = \sum b_{\vec{i}} \prod |A_j|^{i_j}$ $i \in \{0, ..., d\}^k$ j=1 $i \in \{0, ..., d\}^k$ j=1

Proof So $|\vec{A}| = (|A_1|, ..., |A_k|)$ is also a solution, QED

$p(|A_1|, ..., |A_k|) = q(|A_1|, ..., |A_k|)$

Equations with non-natural coefficients

Equations without natural solutions They do exist

• Consider, for instance

$$X^2 = Y + \checkmark$$

• This equation has solution

$$X = \bigvee Y = 2 \bigvee$$

 But there is no natural solution, because the RHS is non-natural and cannot be made natural by adding stuff

Polynomial equations with constant RHS are decidable and in NP

Nondeterministic algorithm For $p(\vec{X}) = C$ with $C \in \mathbf{D}$

- Since + and × are monotonic wrt the sizes of the operands, each X_i in a solution to the equation has size $\leq |C|$
- So it suffices to guess a dynamical system of size $\leq |C|$ for each variable in polynomial time, then calculate LHS
- Finally we check whether LHS and RHS are isomorphic, exploiting the fact that graph isomorphism is in NP
- Only one caveat: if at any time during the calculations the LHS becomes larger than |C|, we halt and reject (otherwise the algorithm might take exponential time)
Systems of linear equations with constant RHS are NP-complete

NP-hardness of linear systems By reduction from One-in-three-3SAT

- Given a 3CNF Boolean formula φ , is there a satisfying assignment such that exactly one literal per clause is true?
- For each variable x of φ we have one equation X + X' = 1, forcing one between X and X' to be 1, and the other to be 0
- For each clause, for instance $(x \lor \neg y \lor z)$, we have one equation X + Y' + Z = 1, which forces exactly one variable to 1
- These are all linear, constant-RHS equations over $\mathbf{D}[\overline{X}]$ (actually $\mathbb{N}[\overline{X}]$), and its solutions are the same as the satisfying assignments of φ with one true literal per clause

A single linear, constant-RHS equation is NP-complete

Reducing the system of equations to one

Several $\mathbb{N}[\vec{X}]$ linear equations to one $\mathbf{D}[\vec{X}]$ equation

- Let $p_1(\vec{X}) = 1, ..., p_n(\vec{X}) = 1$ be the previous system of equations, with $p_i \in \mathbb{N}[\vec{X}]$
- Recall that D is a $\mathbb N$ -semimodule with basis all connected systems
- Take any *n* easy-to-compute, linearly independent systems $e_1, \ldots e_n \in \mathbf{D}$, for instance

$$e_1 = \mathbf{I}$$

$$e_2 = 2$$
 e_3

$$e_3 = \mathbf{1}$$

 e_4

• Then the equation $e_1 p_1(\vec{X}) + \dots + e_n p_n(\vec{X}) = e_1 + \dots + e_n$ is a linear equation over $\mathbf{D}[\vec{X}]$ having the same solutions as the original system

Open problems

Open problems Algebraic ones

- Are there prime elements *P*, that is, whenever *P* divides *AB* it divides either *A* or *B*? What do they represent?
 - We know exactly zero prime elements
- Does it make any sense to adjoin the additive inverses in order to obtain a ring?
 - Think about imaginary numbers, using them in intermediary computation steps, but discarding any imaginary solutions
- Is it useful to find nondeterministic dynamical system (i.e., arbitrary graph) solutions to equations?
- Semirings of infinite discrete-time dynamical systems

Open problems Computability and complexity

- Find larger classes of solvable equations, e.g., by number of variables or degree of the polynomials
 - Do we obtain the same results as for natural numbers?
- The semiring of computably infinite dynamical systems
- Discover classes of equations solvable efficiently
 - Hard for systems in succinct form
- Find out if there exist decidable equations harder than NP
 - It would feel strange to jump from NP to undecidable

Something to read before bed

- A. Dennunzio, V. Dorigatti, E. Formenti, L. Manzoni, A.E. Porreca, Polynomial equations over finite, discrete-time dynamical systems, 13th International Conference on Cellular Automata for Research and Industry, ACRI 2018, https://doi.org/ 10.1007/978-3-319-99813-8_27
- C. Gaze-Maillot, A.E. Porreca, Profiles of dynamical systems and their algebra, arXiv e-prints 2020, https://arxiv.org/abs/2008.00843
- A. Dennunzio, E. Formenti, L. Margara, V. Montmirail, S. Riva, Solving equations on discrete dynamical systems (extended version), 16th International Conference on Computational Intelligence methods for Bioinformatics and Biostatistics, CIBB 2019, https://arxiv.org/abs/1904.13115

Thanks for your attention! Any questions?