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Finite, discrete-time 
dynamical systems



Finite, discrete-time dynamical systems
Just a finite set with a transition function (A, f )
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Finite, discrete-time dynamical systems
Just a finite set with a transition function  modulo isomorphism(A, f )



General shape of a dynamical system
A few limit cycles
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Operations over 
dynamical systems



The inspiration
The category of endomaps of sets



• In graph-theoretic terms, it’s just the disjoint union





• This represents the alternative execution of  and 


• The identity is the empty system 

(A, f ) + (B, g) = (A ⊎ B, f + g) with ( f + g)(x) = {f(x) if x ∈ A
g(x) if x ∈ B

A B

0 = (∅, ∅)

Necessary but not that interesting
Sum of dynamical systems

+ =



General shape of a dynamical system
It’s a sum of cycles with trees going in

C3( , , , ) + C5( , , , , ) + C1( )

+ +



• In graph-theoretic terms, it’s the tensor product





with 


• This represents the synchronous execution of  and 


• The identity is the singleton system 

(A, f ) × (B, g) = (A × B, f × g)

( f × g)(a, b) = ( f(a), g(b))

A B

1 = ({0}, id)

Now we’re talking!
Product of dynamical systems



Product in  is graph tensor productD
Two systems modulo isomorphism

× =



Product in  is graph tensor productD
Temporary state names
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Product in  is graph tensor productD
Cartesian product of the states
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Product in  is graph tensor productD
Arrows iff arrows between both components
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Product in  is graph tensor productD
We forget the state names once again

× =



Introducing: the 
multiplication table, 
poster-size
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Prettier version
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Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



The semiring  of 
dynamical systems

D



• Product is (modulo isomorphism) commutative, associative and 
has identity ; so, it’s a commutative monoid


• Sum is (modulo isomorphism) commutative, associative and has 
identity ; so, another commutative monoid


• The sum is the free commutative monoid (i.e., the multisets) 
over the set of connected, nonempty dynamical systems


• We also have a distributive law and the product annihilation law

1 = ({0}, id)

0 = (∅, ∅)

Like a ring, without subtraction
 (modulo isomorphisms) is a semiringD



• Many decision problems on dynamical systems are intractable


• We try to make them “less intractable” by reducing the size


• We can deduce certain dynamical properties of complex systems 
in terms of the dynamics of its components


• The fixed points of  are those of  and those of 


• The fixed points of  are pairs of fixed points of  and 


• We can also compute number and lengths of cycles this way

A + B A B

A × B A B

Exploit algebra to decompose large systems
Motivation



No unique factorisation!
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• The systems  and  are irreducible


• Any system with a prime number of states is irreducible, 
since the state space is a cartesian product


• So  has two distinct factorisations into irreducibles


            


            

= ×

= ×

And the counterexample is minuscule
No unique factorisation



Systems with arbitrarily 
many factorisations



Theorem
For each , there exist a dynamical system with at least  factorisationsn n



Theorem
For each , there exist a dynamical system with at least  factorisationsn n

( )n



Theorem
For each , there exist a dynamical system with at least  factorisationsn n

( )n = × ( )n−1



Theorem
For each , there exist a dynamical system with at least  factorisationsn n

( )n = × ( )n−1

= × ( )n−2( )2



Theorem
For each , there exist a dynamical system with at least  factorisationsn n

( )n = × ( )n−1

= × ( )n−2( )2

= ⋯ = ×( )n−1



A notable subsemiring



•  is initial in the category of semirings


• Meaning that there is only one homomorphism 





• In the case of , the homomorphism is injective, since  
is the free monoid over connected, nonempty dynamical systems


• So  contains a isomorphic copy of 

ℕ

φ : ℕ → D

φ(n) = 1 + 1 + ⋯ + 1
n times

= + + ⋯+
n times

D (D, + )

D ℕ

This means trouble
 is a subsemiring of ℕ D



A bit more algebra, 
of the linear kind



• Here the vectors are dynamical systems and the scalars are naturals


• Trivial because the semimodule axioms are a consequence 
of  being a subsemiring of :








•  as a semimodule has a unique, countably infinite basis 
consisting of all nonempty, connected dynamical systems


• The fact that  is a semimodule will be useful later

ℕ D

n(A + B) = nA + nB (m + n)A = mA + nA

(mn)A = m(nA) 1A = A 0A = n0 = 0

D

D

Like a vector space, but over a semiring
 is a -semimoduleD ℕ



Irreducible systems



• Formally:   


• The total number of systems over exactly  states is 

asymptotically , with  and 


• A reducible system over  states is the product of two systems 
with  and  states such that 


• With a few summations and upper bounds, we get the result


• Notice that this is the opposite of the subsemiring 

lim
n→∞

number of reducible systems over ≤ n states
total number of systems over ≤ n states

= 0

n
η

αn

n
η ≈ 0.443 α ≈ 2.956

n
p q pq = n

ℕ

 is irreducible iff  implies  or A A = BC B = 1 C = 1

Most dynamical systems are irreducible



Polynomial equations 
over D[X1, …, Xm]



• Consider the equation


• There is least one solution

For the analysis of complex systems
Polynomial equations over D[X1, …, Xm]

X = Y = Z =

X + Y2 = Z +



• A ring has additive inverses (aka, it has subtraction)


• Each polynomial equation in a ring can be written as 


• This is not the case for our semiring, which has no subtraction


• The general polynomial equation has the form  
with two polynomials 

p( ⃗X ) = 0

p( ⃗X ) = q( ⃗X )
p, q ∈ D[ ⃗X ]

As opposed to rings
Polynomial equations in semirings



Solvability of polynomial 
equations over  
is undecidable

D



• We have showed that  is a subsemiring of 


• But sometimes enlarging the solution space makes the problem 
actually easier: given 


• Finding if  has solution in  is undecidable


• Finding if  has solution in  is decidable


• Finding if  has solution in  is trivial


• So, what about finding solutions in ?

ℕ D

p, q ∈ ℕ[ ⃗X ]

p( ⃗X ) = q( ⃗X ) ℕ

p( ⃗X ) = q( ⃗X ) ℝ

p( ⃗X ) = q( ⃗X ) ℂ

D

The spectre of Hilbert’s 10th problem is haunting D
Undecidability of polynomial equations



• Let  and  with 



• Then  has the non-natural solution


          


• But, of course, it also has the natural solution , 


• Notice how  and 


• This is not a coincidence!

p(X, Y ) = 2X2 q(X, Y ) = 3Y
p, q ∈ ℕ[X, Y] ≤ D[X, Y]

2X2 = 3Y

X = Y = 2

X′ = 3 Y′ = 6

X′ = |X | Y′ = |Y |

With non-natural solutions
Natural polynomial equations



• 


•      


• Since  is the disjoint union, we have





• Since  is the cartesian product, we have


|∅ | = 0

| | = 1

+

|A + B | = |A | + |B |

×

|AB | = |A | × |B |

It’s a semiring homomorphism
The function “size” | ⋅ | : D → ℕ



Of degree  over the variables ≤ d ⃗X = (X1, …, Xk)
Notation for polynomials p ∈ D[ ⃗X ]

p = ∑
⃗i∈{0,…,d}k

a ⃗i
⃗X ⃗i

where ⃗X ⃗i =
k

∏
j=1

Xij
j



Of degree  over the variables ≤ d ⃗X = (X1, …, Xk)
Notation for polynomials p ∈ D[ ⃗X ]

p = ∑
⃗i∈{0,…,d}k

a ⃗i
⃗X ⃗i

where ⃗X ⃗i =
k

∏
j=1

Xij
j

for instance (X, Y, Z)(2,4,3) = X2Y4Z3



• If a polynomial equation over  has a solution 
in , then it also has a solution in 


• In the larger semiring  we may find extra solutions, 
but only if the equation is already solvable over the naturals


• Then, by reduction from Hilbert’s 10th problem, we obtain 
the undecidability in  of equations over …


• …and thus of arbitrary equations over 

ℕ[X1, …, Xk]
Dk ℕk

D

D ℕ[ ⃗X ]

D[ ⃗X ]

Solvability of natural equations
Theorem



Proof
Consider  with p( ⃗X ) = q( ⃗X ) p, q ∈ ℕ[ ⃗X ]

∑
i∈{0,…,d}k

a ⃗i
⃗X ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗X ⃗i



Proof
Suppose that  is a solution⃗A ∈ Dk

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i



Proof
Apply the size function | ⋅ |

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i



Proof
The size function  is a homomorphism| ⋅ |

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i



∑
i∈{0,…,d}k

|a ⃗i | | ⃗A ⃗i | = ∑
i∈{0,…,d}k

|b ⃗i | | ⃗A ⃗i |

Proof
The size function  is a homomorphism| ⋅ |



∑
i∈{0,…,d}k

a ⃗i | ⃗A ⃗i | = ∑
i∈{0,…,d}k

b ⃗i | ⃗A ⃗i |

Proof
The coefficients are natural



∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

Aij
j = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

Aij
j

Proof
We have ⃗A ⃗i = ∏k

j=1 Aij
j



∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

|Aij
j | = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

|Aij
j |

Proof
The size function  is a homomorphism| ⋅ |



∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

|Aj |
ij = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

|Aj |
ij

Proof
The size function  is a homomorphism| ⋅ |



Proof
So  is also a solution, QED| ⃗A | = ( |A1 | , …, |Ak | )

p( |A1 | , …, |Ak | ) = q( |A1 | , …, |Ak | )



Equations with 
non-natural coefficients



• Consider, for instance





• This equation has solution


	 	 	 	 	 	 


• But there is no natural solution, because the RHS 
is non-natural and cannot be made natural by adding stuff

X2 = Y +

X = Y = 2

They do exist
Equations without natural solutions



Polynomial equations 
with constant RHS are 
decidable and in NP



• Since  and  are monotonic wrt the sizes of the operands, each 
 in a solution to the equation has size 


• So it suffices to guess a dynamical system of size  
for each variable in polynomial time, then calculate LHS


• Finally we check whether LHS and RHS are isomorphic, 
exploiting the fact that graph isomorphism is in 


• Only one caveat: if at any time during the calculations the LHS 
becomes larger than , we halt and reject (otherwise the 
algorithm might take exponential time)

+ ×
Xi ≤ |C |

≤ |C |

NP

|C |

For  with p( ⃗X ) = C C ∈ D
Nondeterministic algorithm



Systems of linear equations 
with constant RHS are 

-completeNP



• Given a 3CNF Boolean formula , is there a satisfying 
assignment such that exactly one literal per clause is true?


• For each variable  of  we have one equation , 
forcing one between  and  to be , and the other to be 


• For each clause, for instance , we have one 
equation , which forces exactly one variable to 


• These are all linear, constant-RHS equations over  
(actually  ), and its solutions are the same as the satisfying 
assignments of  with one true literal per clause

φ

x φ X + X′ = 1
X X′ 1 0

(x ∨ ¬y ∨ z)
X + Y′ + Z = 1 1

D[ ⃗X ]
ℕ[ ⃗X ]

φ

By reduction from One-in-three-3SAT
-hardness of linear systemsNP



A single linear, 
constant-RHS equation 
is -completeNP



• Let  be the previous system 
of equations, with 


• Recall that  is a -semimodule with basis all connected systems


• Take any  easy-to-compute, linearly independent systems 
, for instance





• Then the equation  
is a linear equation over  having the same solutions 
as the original system

p1( ⃗X ) = 1,…, pn( ⃗X ) = 1
pi ∈ ℕ[ ⃗X ]

D ℕ

n
e1, …en ∈ D

e1 = e2 = e3 = e4 = ⋯

e1p1( ⃗X ) + ⋯+enpn( ⃗X ) = e1+⋯+en
D[ ⃗X ]

Several  linear equations to one  equationℕ[ ⃗X ] D[ ⃗X ]

Reducing the system of equations to one



Open problems



• Are there prime elements , that is, whenever  divides  
it divides either  or ? What do they represent?


• We know exactly zero prime elements 🤷


• Does it make any sense to adjoin the additive inverses 
in order to obtain a ring?


• Think about imaginary numbers, using them in intermediary 
computation steps, but discarding any imaginary solutions


• Is it useful to find nondeterministic dynamical system  
(i.e., arbitrary graph) solutions to equations?


• Semirings of infinite discrete-time dynamical systems

P P AB
A B

Algebraic ones
Open problems



• Find larger classes of solvable equations, e.g., by number 
of variables or degree of the polynomials


• Do we obtain the same results as for natural numbers?


• The semiring of computably infinite dynamical systems


• Discover classes of equations solvable efficiently


• Hard for systems in succinct form


• Find out if there exist decidable equations harder than 


• It would feel strange to jump from  to undecidable

NP

NP

Computability and complexity
Open problems



• A. Dennunzio, V. Dorigatti, E. Formenti, L. Manzoni, A.E. Porreca, 
Polynomial equations over finite, discrete-time dynamical systems, 
13th International Conference on Cellular Automata for Research 
and Industry, ACRI 2018, https://doi.org/
10.1007/978-3-319-99813-8_27


• C. Gaze-Maillot, A.E. Porreca, Profiles of dynamical systems and 
their algebra, arXiv e-prints 2020, https://arxiv.org/abs/2008.00843


• A. Dennunzio, E. Formenti, L. Margara, V. Montmirail, S. Riva, 
Solving equations on discrete dynamical systems (extended 
version), 16th International Conference on Computational 
Intelligence methods for Bioinformatics and Biostatistics, CIBB 
2019, https://arxiv.org/abs/1904.13115

Something to read before bed
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Thanks for your attention! 
Any questions?


