Algebraic analysis of discrete dynamical systems ACiD Seminar • 8 December 2020

Antonio E. Porreca • aeporreca.org
Aix-Marseille Université \& LIS • Marseille, France

Finite, discrete-time dynamical systems

Finite, discrete-time dynamical systems Just a finite set with a transition function (A, f)

Finite, discrete-time dynamical systems

 Just a finite set with a transition function (A, f) modulo isomorphism

General shape of a dynamical system

A few limit cycles

General shape of a dynamical system

A few limit cycles with trees going in

General shape of a dynamical system

 A few limit cycles with trees going in
General shape of a dynamical system

A few limit cycles with trees going in

General shape of a dynamical system

A few limit cycles with trees going in

Operations over dynamical systems

The inspiration

The category of endomaps of sets

Conceptual Mathematics
A first introduction to categories Second Edition
F. William Lawere Stephen H. Schanuel

Sum of dynamical systems Necessary but not that interesting

- In graph-theoretic terms, it's just the disjoint union
$(A, f)+(B, g)=(A \uplus B, f+g) \quad$ with $(f+g)(x)= \begin{cases}f(x) & \text { if } x \in A \\ g(x) & \text { if } x \in B\end{cases}$
- This represents the alternative execution of A and B
- The identity is the empty system $\mathbf{0}=(\varnothing, \varnothing)$

General shape of a dynamical system

 It's a sum of cycles with trees going in

Product of dynamical systems Now we're talking!

- In graph-theoretic terms, it's the tensor product

$$
\begin{aligned}
& (A, f) \times(B, g)=(A \times B, f \times g) \\
& \text { with }(f \times g)(a, b)=(f(a), g(b))
\end{aligned}
$$

- This represents the synchronous execution of A and B
- The identity is the singleton system $\mathbf{1}=(\{0\}, \mathrm{id})$

Product in D is graph tensor product

 Two systems modulo isomorphism
$=$

Product in D is graph tensor product

Temporary state names

Product in D is graph tensor product

 Cartesian product of the states

Product in D is graph tensor product

 Arrows iff arrows between both components

Product in D is graph tensor product

 We forget the state names once again

Introducing: the multiplication table, poster-size

	－	\sim	\bigcirc	－	$\%$	\bigcirc	\because	\therefore	$=$	P	∇	$\overline{ }$	\ddagger	6	－	\vdots	\bigcirc	\pm	\therefore	\therefore	\therefore	\because	P．	∇	ρ	？	\cdots	$\stackrel{\square}{\square}$	∇	Δ
－	－	\cdots	\bigcirc	－	\％	＜	\because	\because	8	f	V	$\overline{ }$	t	f	\cdots	t	\bigcirc	\pm	\therefore	\therefore	\therefore	\because	fo	∇	ρ	P	\cdots	s	D	Δ
\cdots	\cdots	\％	\because	4	χ	\dagger	\％	$:$	－	\times	－	，	\checkmark	\times	\pm	t	\％		$\%$	Y	\pm	\％	＜－	－	K	＊	x_{4}	4	x	X
\bigcirc	\bigcirc	\because	\therefore	$\stackrel{\square}{0}$	ft	i	\because	\because	$\stackrel{\circ}{\square}$	pl	∇^{∇}	\pm	z^{2}	$\% \%$	－	t^{2}	8	\pm	\because	\pm	\because	$\stackrel{\text { 亏̈ }}{\square}$	\％f	σ	$广$	p^{p}	$-0^{-\infty}$	$\stackrel{3}{0}$	\square	4
ε	8	4	$\stackrel{\square}{3}$	ρ	\cdots	t	－	$\stackrel{\square}{\square}$	$\stackrel{\square}{3}$	－1	\square	＊	1	\cdots	）		f－	\dagger	\pm	\pm	$\stackrel{3}{0}$	$\stackrel{\rightharpoonup}{3}$	A	θ	Σ	4	$\underline{ }$	$\stackrel{\rightharpoonup}{5}$	，	4
\％	$\%$	＊	f^{\prime}	＋	\cdots	入	＋	\％ 6	＋${ }^{+}$	＊	A	－	＋	＊	$\frac{y}{x}$	＞	$x i$	＊X	4	＋	64	${ }^{4 /}$	＊	x＋	＊	\times	$+\gamma$	＋	－	＋1
γ	\bigcirc		\bigcirc	f	x^{*}	ψ	4	81	i	＋	P	$\frac{*}{\pi}$	${ }_{X}^{X}$	x^{x}	x^{2}	x		t	$A 1$	f	\＄i	\hat{k}	人	$>$	χ^{*}	X	\pm	$f f$	¢	
\because	\because	$\%$	\because	－	＋	i	\cdots	\because	4	\times	$\stackrel{\square}{4}$	k	\pm	关	－	－	i	\＃	\％	F	\because	20	为	\ddot{z}	\％	A	$\times-$	$\Delta 1$	k^{2}	k^{4}
\because	\therefore	\therefore	\because	$\stackrel{3}{3}$	ft	$\$$	\because	为	$\stackrel{3}{\square}$	bp	$\nabla \nabla$	7	7^{2}	\％f	z^{z}	L 2	sin	：	\because	$\stackrel{ \pm}{8}$	\because	\because	e.f.	$\stackrel{\rightharpoonup}{*}$	¢	p_{p}^{p}	20^{20}	$\stackrel{3}{3}$	b^{\square}	$4{ }^{4}$
8	$\stackrel{\circ}{8}$	－	$\stackrel{\square}{\square}$	$\stackrel{3}{3}$	＊	i	\div	$\stackrel{\square}{\square}$	$\stackrel{\square}{3}$	A	∇^{∇}	×	λt	长	$x^{-\alpha}$	L	\#	4	为	5	$\stackrel{\square}{\square}$	苞	迷	θ	y^{2}	1	1	$\stackrel{3}{3}$	L	$4{ }^{4}$
P	f	，	pl	pl	，	＜	11	bl	bf	y^{x}	ζ	K		K	t	Z	f^{\prime}	t	th	ti	bplp	Spp	8	f	＊	It	＊	Ppp	K	人 ${ }^{\text {a }}$
∇	∇	∇	∇^{V}		X	α	∇	$\stackrel{\nabla}{v}$	ω	Z	∇v	K	7	$\stackrel{\nabla}{X}$	A		V	\bar{Y}	$\stackrel{\nabla}{\nabla}$	70	$\stackrel{\nabla}{\nabla}$	$\Delta)^{\nabla}$	\sum_{2}	∇_{∇}	1			0	枵	
$广$	\％	＊	！	I	＊	1	＊	＋	T	χ	X	＊	k	$*$	＊	＊	$y^{\prime} \mathrm{K}$	${ }^{*}$	\cdots	${ }^{+}$	\％	＋	＊	＋	＊	＊	＊${ }^{\text {＊}}$	＋+	t	K
\ddagger	\ddagger	K	t ${ }^{+}$		＊	x^{2}	${ }^{+}$	4^{2}	＋	＊	A	\checkmark		－	x	＋	＋	k^{*}	＋	t	${ }_{4}+$	约	为	x	E	$\underset{y}{7}$	H	K	¢	＜
\％	\ldots	大	$\% \%$	＋	＊	λ_{i}^{\prime}	尔	\％fot	－6．	k	x^{∇}	\cdots	x^{t}	\％	＊－	17	\pm	－x^{\prime}	＋15	btx	\％\％	4，4	＋$\%$	x_{i}^{f}	－	＋	＋	दो	＊	74
α	－	χ	T		t	$+$	$\frac{y-k}{\lambda}$	\％	r-		X	＊	＞${ }_{\text {＊}}$	x^{-2}	χ^{+k}	x^{+}	y	y	x	e^{z}	－	z^{2}	$z<$	x^{2}		＊${ }^{+}$				
\vdots	\vdots		E^{2}		＊		－	t^{2}	y		7	＊${ }^{*}$	－${ }^{+}$	\％					－ 12	大	2 2	12	＋${ }^{\prime}$	\square					7	
i	\bigcirc	$=$	－		x^{x}	τ^{+}	$+i$	\＄¢ ⿺	$f \leqslant$		$>^{\nabla}$	$\frac{v \grave{\pi}}{\pi}$	x	x^{4}	$x^{2}+2$	\％	हैर	\leftrightarrow	＋in	fe^{+}	सil	疮	＋ 2	$\frac{1 v}{}$	天	4		76	－	f^{6}
0	\pm		\pm	，	－\times	＋t	\＃	！	＋1	x^{x}	-4	$*^{*}$	x^{2}	－$x^{\text {K }}$	4	tet	Et	交	\％	$\sqrt{7}$	\％	de	＜＜	－	＊	＊	＋	41	＋	सर
\therefore	\therefore	\％	\because	5		-11	\％	\because	寿		∇ / ∇	x	娎	$H^{4} \text {. }$	$+\frac{X}{x}$	-12	i		$\%$	库	\％	do	He	洨	F	18	\times	$t-$	$\mathrm{x}^{\text {b }}$	$\frac{4}{4}$
\therefore	\therefore	V	¢ ${ }^{\circ}$	4	－${ }^{\text {K }}$	－ 2	V	0	星	a	0	x^{*}	x^{2}	気	x^{4}	y	$4=$	$\sqrt{5}$	寿	y	？	\square	$x=$	0	F2	＋${ }^{4}$	＋	$\Delta \pm$	$+^{0}$	$2{ }^{4}$
\therefore	\therefore	\pm	8	$\stackrel{\rightharpoonup}{6}$	6tt	8	\because	\％	$\stackrel{\text { 긍 }}{\stackrel{\circ}{\circ}}$	bplp	∇_{∇}	$\frac{y}{x}$	$\frac{4}{4}$	革	$\therefore z$	b_{2}	है।	$:$	\％	y_{z}^{2}	\％\％	\％	forp	∇_{\circ}	π	$p_{p}^{p} d p$	\％	$\stackrel{3}{3}$	$b b$	4.4
\because	$\stackrel{\circ}{-}$	$=$	$\stackrel{\circ}{\circ}$	$\stackrel{3}{\square}$	＊	18	4	$\stackrel{\text { \％}}{\stackrel{\circ}{\circ}}$	$\ddot{3}$	$f x$	$\nabla \nabla^{\nabla}$	$7 x$	x^{2+}	灰安家	x	11.	y	－$=$	do	夾	๕ㅜㅜㄹ	里边	60	做 ${ }^{8}$	Fsz	P／	E－	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	碞	4，4
fo	fo	T－	pf	10	\％	i	$\frac{\ell}{\ell}$	fos	$f f,$	81	Y_{v}	k	$x+$	yt	$\underset{x}{F-<}$	z	K	H1	t解	$f!$	解	bof	$f k$	\mathcal{R}_{0}	3k	t	＋	fofse	y^{b}	－ 4
∇	∇	∇.	\cdots	θ	t	4	\％	∇_{σ}	Δ	${ }_{2} \zeta_{S}$	$\stackrel{\nabla}{\nabla_{v}}$	$\frac{z_{k}}{x}$	\dot{z}	$\frac{f_{0}}{x}$	<	4	χ	-1	$\frac{7}{7}$	S	$\stackrel{\rightharpoonup}{*}$	哈。	\dot{k}	$\bar{\nabla} \bar{\nabla}$	x	$\frac{i}{3}$	－	0	$\Delta \Delta$	（4）
\rangle	\rangle	7	\pm	\pm	K	\pm	\％	∞	F	y^{*}	\pm	v	＊		7	\pm	7	＋	＋	${ }_{4}^{2}$	\％	च	$\times 7$	χ^{χ}	＞	＋ 7	＋	戋		$x^{x \times}$
f	P	I	p p	$p^{\text {d }}$	\％	大	＋1	$p_{p}{ }^{\text {d }}$	pp	x	\cdots	K	F	K	x	x	x^{\prime}	＋	f_{p}^{l}	f_{l}	ppp	dpd	l	$\frac{1}{x}$	x^{*}	＋	x^{X}	ppl	＊	N
\cdots	20		$2-\infty$	$2-\infty$	＊		x	22^{2}	20	${ }^{+}$	Y	VK	${ }^{*}$	＊	y		x	x	v	$x=0$	z	E．0	r^{x}	－	K	$x-$	${ }^{\chi}$	zo		JS
5	\square		$\stackrel{\rightharpoonup}{8}$	$\stackrel{\rightharpoonup}{3}$	－	b）	± 1	$\stackrel{3}{3}$	$\stackrel{3}{3}$	or	0	${ }^{\times}$	－	χ^{2}	y	/	y	， 11	$\Delta=$	16	흔	$\begin{array}{\|l\|} \hline \stackrel{y}{3} \\ \text { 형 } \end{array}$	$+x$	0	2	411	15	$\begin{aligned} & \text { 블 } \\ & \hline \end{aligned}$	vio	4，4
D	D		\square	，	＊	＞4	x^{\square}	b^{b}	\square	－	$b b$	＊	\pm	$*^{\square}$		－	－	－${ }^{\text {X }}$	＜ 0°	0^{x}	b	α	x	b^{b}	＊	＊	$3 \times$	a^{2}	4^{4}	T
Δ	4	－	4	4	X	δ	s	44^{4}	4	IS	0	＊	＊	＊${ }_{4}$	－	＜	St	＜	－ 5^{46}	$8^{44^{4}}$	$\begin{aligned} & 4,4 \\ & 4 \end{aligned}$	48	k_{8}	（b）	$+^{+}$	－	\＆	$\begin{aligned} & 45 \\ & 48 \end{aligned}$		4

$\%$					Sos		
∇					5		
				Soss)			

Prettier version

The semiring \mathbf{D} of dynamical systems

D (modulo isomorphisms) is a semiring Like a ring, without subtraction

- Product is (modulo isomorphism) commutative, associative and has identity $\mathbf{1}=(\{0\}, i d)$; so, it's a commutative monoid
- Sum is (modulo isomorphism) commutative, associative and has identity $\mathbf{0}=(\varnothing, \varnothing)$; so, another commutative monoid
- The sum is the free commutative monoid (i.e., the multisets) over the set of connected, nonempty dynamical systems
- We also have a distributive law and the product annihilation law

Motivation
 Exploit algebra to decompose large systems

- Many decision problems on dynamical systems are intractable
- We try to make them "less intractable" by reducing the size
- We can deduce certain dynamical properties of complex systems in terms of the dynamics of its components
- The fixed points of $A+B$ are those of A and those of B
- The fixed points of $A \times B$ are pairs of fixed points of A and B
- We can also compute number and lengths of cycles this way

No unique factorisation!

Multiplication table

\times	\varnothing	\bigcirc	C_{0}	$C_{!}$	O.	G_{i}	a_{\ddots}
\varnothing							
\bigcirc	\varnothing	C	C_{0}	$C_{!}$	C.	c_{i}	
\bigcirc	\varnothing	C_{0}		a_{0}			
C_{0}	\varnothing	C_{0}	C_{0}				
C.	\varnothing	-.					
	\varnothing	C_{i}	\therefore				

\times	\varnothing	\bigcirc	Q_{\ddots}	C_{0}	C.		a_{i}
\varnothing							
\bigcirc	\varnothing	C	C_{0}	C^{C}	©.	C_{i}	a
\bigcirc	\varnothing	G_{0}	C_{i}	C_{0}			
$C_{0}{ }_{0}$	\varnothing	C_{0}	C_{0}				
0.	\varnothing	-.					
C_{i}	\varnothing	C_{i}	\therefore				\because

\times	\varnothing	¢			\because.		
\varnothing							
\bigcirc	\varnothing	\bigcirc		${ }^{\text {c }}$	\because.		
\bigcirc	\varnothing						
$¢^{\text {¢ }}$	\varnothing	$\square^{\text {c }}$			\cdots		
\because	\varnothing	\because					
0	\varnothing						

No unique factorisation
 And the counterexample is minuscule

- The systems $C_{!} C_{0}$ and \square_{0} are irreducible
- Any system with a prime number of states is irreducible, since the state space is a cartesian product
- So . ${ }_{.}^{\text {. }}$. 0 has two distinct factorisations into irreducibles

Systems with arbitrarily many factorisations

Theorem

For each n, there exist a dynamical system with at least n factorisations

Theorem

For each n, there exist a dynamical system with at least n factorisations

Theorem

For each n, there exist a dynamical system with at least n factorisations

$$
(\zeta)^{n}=\Omega_{\Omega} \times(\delta \Omega)^{n-1}
$$

Theorem

For each n, there exist a dynamical system with at least n factorisations

$$
\begin{aligned}
(\delta)^{n} & =\Omega_{\Omega} \times(\delta \Omega)^{n-1} \\
& =\left(\Omega_{\Omega}\right)^{2} \times(\delta \Omega)^{n-2}
\end{aligned}
$$

Theorem

For each n, there exist a dynamical system with at least n factorisations

$$
\begin{aligned}
(\delta))^{n} & =\Omega_{\Omega} \times(\delta \Omega)^{n-1} \\
& \left.=\left(\Omega_{\Omega}\right)^{2} \times(\delta)\right)^{n-2} \\
=\cdots & =\left(\Omega_{\Omega}\right)^{n-1} \times \delta
\end{aligned}
$$

A notable subsemiring

\mathbb{N} is a subsemiring of \mathbf{D}

This means trouble

- \mathbb{N} is initial in the category of semirings
- Meaning that there is only one homomorphism $\varphi: \mathbb{N} \rightarrow \mathbf{D}$

$$
\varphi(n)=\underbrace{1+1+\cdots+1}_{n \text { times }}=\underbrace{C_{\bullet}+C_{\bullet}+\cdots+C_{\bullet}}_{n \text { times }}
$$

- In the case of \mathbf{D}, the homomorphism is injective, since $(\mathbf{D},+)$ is the free monoid over connected, nonempty dynamical systems
- So \mathbf{D} contains a isomorphic copy of \mathbb{N}

A bit more algebra, of the linear kind

D is a \mathbb{N}-semimodule
 Like a vector space, but over a semiring

- Here the vectors are dynamical systems and the scalars are naturals
- Trivial because the semimodule axioms are a consequence of \mathbb{N} being a subsemiring of \mathbf{D} :

$$
\begin{aligned}
& n(A+B)=n A+n B \quad(m+n) A=m A+n A \\
& (m n) A=m(n A) \quad 1 A=A \quad 0 A=n \mathbf{0}=\mathbf{0}
\end{aligned}
$$

- D as a semimodule has a unique, countably infinite basis consisting of all nonempty, connected dynamical systems
- The fact that \mathbf{D} is a semimodule will be useful later

Irreducible systems

Most dynamical systems are irreducible

A is irreducible iff $A=B C$ implies $B=1$ or $C=1$

- Formally: $\lim _{n \rightarrow \infty} \frac{\text { number of reducible systems over } \leq n \text { states }}{\text { total number of systems over } \leq n \text { states }}=0$
- The total number of systems over exactly n states is asymptotically $\eta \frac{\alpha^{n}}{\sqrt{n}}$, with $\eta \approx 0.443$ and $\alpha \approx 2.956$
- A reducible system over n states is the product of two systems with p and q states such that $p q=n$
- With a few summations and upper bounds, we get the result
- Notice that this is the opposite of the subsemiring \mathbb{N}

Polynomial equations $\operatorname{over} \mathbf{D}\left[X_{1}, \ldots, X_{m}\right]$

Polynomial equations over $\mathbf{D}\left[X_{1}, \ldots, X_{m}\right]$

 For the analysis of complex systems- Consider the equation

- There is least one solution

$$
x=6
$$

Polynomial equations in semirings As opposed to rings

- A ring has additive inverses (aka, it has subtraction)
- Each polynomial equation in a ring can be written as $p(\vec{X})=0$
- This is not the case for our semiring, which has no subtraction
- The general polynomial equation has the form $p(\vec{X})=q(\vec{X})$ with two polynomials $p, q \in \mathbf{D}[\vec{X}]$

Solvability of polynomial equations over D is undecidable

Undecidability of polynomial equations
 The spectre of Hilbert's 10th problem is haunting D

- We have showed that \mathbb{N} is a subsemiring of \mathbf{D}
- But sometimes enlarging the solution space makes the problem actually easier: given $p, q \in \mathbb{N}[\vec{X}]$
- Finding if $p(\vec{X})=q(\vec{X})$ has solution in \mathbb{N} is undecidable
- Finding if $p(\vec{X})=q(\vec{X})$ has solution in \mathbb{R} is decidable
- Finding if $p(\vec{X})=q(\vec{X})$ has solution in \mathbb{C} is trivial
- So, what about finding solutions in \mathbf{D} ?

Natural polynomial equations With non-natural solutions

- Let $p(X, Y)=2 X^{2}$ and $q(X, Y)=3 Y$ with $p, q \in \mathbb{N}[X, Y] \leq \mathbf{D}[X, Y]$
- Then $2 X^{2}=3 Y$ has the non-natural solution

$$
X=Y=2
$$

- But, of course, it also has the natural solution $X^{\prime}=3, Y^{\prime}=6$
- Notice how $X^{\prime}=|X|$ and $Y^{\prime}=|Y|$
- This is not a coincidence!

The function "size" $|\cdot|: \mathbf{D} \rightarrow \mathbb{N}$ It's a semiring homomorphism

- $|\varnothing|=0$
- $|\Omega|=1$
- Since + is the disjoint union, we have

$$
|A+B|=|A|+|B|
$$

- Since \times is the cartesian product, we have

$$
|A B|=|A| \times|B|
$$

Notation for polynomials $p \in \mathbf{D}[\vec{X}]$

 Of degree $\leq d$ over the variables $\vec{X}=\left(X_{1}, \ldots, X_{k}\right)$

Notation for polynomials $p \in \mathbf{D}[\vec{X}]$

 Of degree $\leq d$ over the variables $\vec{X}=\left(X_{1}, \ldots, X_{k}\right)$$$
\begin{aligned}
& p=\sum_{\vec{i} \in\{0, \ldots, d\}^{k}} a_{\vec{i}} \overrightarrow{X^{i}} \\
& \text { where } \quad \vec{X}^{\vec{i}}=\prod_{j=1}^{k} X_{j}^{i_{j}}
\end{aligned}
$$

for instance $(X, Y, Z)^{(2,4,3)}=X^{2} Y^{4} Z^{3}$

Theorem

Solvability of natural equations

- If a polynomial equation over $\mathbb{N}\left[X_{1}, \ldots, X_{k}\right]$ has a solution in \mathbf{D}^{k}, then it also has a solution in \mathbb{N}^{k}
- In the larger semiring \mathbf{D} we may find extra solutions, but only if the equation is already solvable over the naturals
- Then, by reduction from Hilbert's 10th problem, we obtain the undecidability in \mathbf{D} of equations over $\mathbb{N}[\vec{X}] \ldots$
- ...and thus of arbitrary equations over $\mathbf{D}[\vec{X}]$

Proof

Consider $p(\vec{X})=q(\vec{X})$ with $p, q \in \mathbb{N}[\vec{X}]$

$$
\sum_{\{0, \ldots, d\}^{k}} a_{\vec{i}} \vec{X}^{\vec{i}}=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \overrightarrow{X^{\vec{i}}}
$$

Proof

Suppose that $\vec{A} \in \mathbf{D}^{k}$ is a solution

$$
\sum_{\{0, \ldots, d\}^{k}} a_{\vec{i}} \overrightarrow{A^{i}}=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \overrightarrow{A^{\vec{i}}}
$$

Proof

Apply the size function |•|

$$
\left|\sum_{i \in\{0, \ldots, d\}^{k}} a_{\vec{i}} \vec{A} \vec{i}\right|=\left|\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \vec{A} \vec{i}\right|
$$

Proof

The size function $|\cdot|$ is a homomorphism

$$
\sum_{\left\{\{0, \ldots, d\}^{k}\right.}\left|a_{\vec{i}} \overrightarrow{A^{\vec{i}}}\right|=\sum_{i \in\{0, \ldots, d\}^{k}}\left|b_{\vec{i}} \overrightarrow{A^{i}}\right|
$$

Proof

The size function $|\cdot|$ is a homomorphism

Proof

The coefficients are natural

$$
\sum_{\{0, \ldots, d\}^{k}} a_{\vec{i}}\left|\overrightarrow{A^{i}}\right|=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}}\left|\overrightarrow{A^{i}}\right|
$$

Proof

We have $\overrightarrow{A^{i}}=\prod_{j=1}^{k} A_{j}^{i_{j}}$

Proof

The size function $|\cdot|$ is a homomorphism

Proof

The size function $|\cdot|$ is a homomorphism

Proof

So $|\vec{A}|=\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)$ is also a solution, QED

$$
p\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)=q\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)
$$

Equations with non-natural coefficients

Equations without natural solutions

They do exist

- Consider, for instance

$$
X^{2}=Y+
$$

- This equation has solution

$$
X=
$$

- But there is no natural solution, because the RHS is non-natural and cannot be made natural by adding stuff

Polynomial equations with constant RHS are decidable and in NP

Nondeterministic algorithm

 For $p(\vec{X})=C$ with $C \in \mathbf{D}$- Since + and \times are monotonic wrt the sizes of the operands, each X_{i} in a solution to the equation has size $\leq|C|$
- So it suffices to guess a dynamical system of size $\leq|C|$ for each variable in polynomial time, then calculate LHS
- Finally we check whether LHS and RHS are isomorphic, exploiting the fact that graph isomorphism is in NP
- Only one caveat: if at any time during the calculations the LHS becomes larger than $|C|$, we halt and reject (otherwise the algorithm might take exponential time)

Systems of linear equations with constant RHS are NP-complete

NP-hardness of linear systems By reduction from One-in-three-3SAT

- Given a 3CNF Boolean formula φ, is there a satisfying assignment such that exactly one literal per clause is true?
- For each variable x of φ we have one equation $X+X^{\prime}=1$, forcing one between X and X^{\prime} to be 1 , and the other to be 0
- For each clause, for instance ($x \vee \neg y \vee z$), we have one equation $X+Y^{\prime}+Z=1$, which forces exactly one variable to 1
- These are all linear, constant-RHS equations over $\mathbf{D}[\vec{X}]$ (actually $\mathbb{N}[\vec{X}]$), and its solutions are the same as the satisfying assignments of φ with one true literal per clause

A single linear, constant-RHS equation is NP-complete

Reducing the system of equations to one

Several $\mathbb{N}[\vec{X}]$ linear equations to one $\mathbf{D}[\vec{X}]$ equation

- Let $p_{1}(\vec{X})=1, \ldots, p_{n}(\vec{X})=1$ be the previous system of equations, with $p_{i} \in \mathbb{N}[\vec{X}]$
- Recall that \mathbf{D} is a \mathbb{N}-semimodule with basis all connected systems
- Take any n easy-to-compute, linearly independent systems $e_{1}, \ldots e_{n} \in \mathbf{D}$, for instance

$$
e_{2}=
$$

$$
e_{3}=a_{0}
$$

- Then the equation $e_{1} p_{1}(\vec{X})+\cdots+e_{n} p_{n}(\vec{X})=e_{1}+\cdots+e_{n}$ is a linear equation over $\mathbf{D}[\vec{X}]$ having the same solutions as the original system

Open problems

Open problems

Algebraic ones

- Are there prime elements P, that is, whenever P divides $A B$ it divides either A or B ? What do they represent?
- We know exactly zero prime elements
- Does it make any sense to adjoin the additive inverses in order to obtain a ring?
- Think about imaginary numbers, using them in intermediary computation steps, but discarding any imaginary solutions
- Is it useful to find nondeterministic dynamical system (i.e., arbitrary graph) solutions to equations?
- Semirings of infinite discrete-time dynamical systems

Open problems
 Computability and complexity

- Find larger classes of solvable equations, e.g., by number of variables or degree of the polynomials
- Do we obtain the same results as for natural numbers?
- The semiring of computably infinite dynamical systems
- Discover classes of equations solvable efficiently
- Hard for systems in succinct form
- Find out if there exist decidable equations harder than NP
- It would feel strange to jump from NP to undecidable

Bibliography
 Something to read before bed

- A. Dennunzio, V. Dorigatti, E. Formenti, L. Manzoni, A.E. Porreca, Polynomial equations over finite, discrete-time dynamical systems, 13th International Conference on Cellular Automata for Research and Industry, ACRI 2018, https://doi.org/
10.1007/978-3-319-99813-8_27
- C. Gaze-Maillot, A.E. Porreca, Profiles of dynamical systems and their algebra, arXiv e-prints 2020, https://arxiv.org/abs/2008.00843
- A. Dennunzio, E. Formenti, L. Margara, V. Montmirail, S. Riva, Solving equations on discrete dynamical systems (extended version), 16th International Conference on Computational Intelligence methods for Bioinformatics and Biostatistics, CIBB 2019, https://arxiv.org/abs/1904.13115

Thanks for your attention! Any questions?

