Analysis of discrete dynamical systems An algebraic perspective

Antonio E. Porreca • aeporreca.org Aix-Marseille Université \& LIS II

Discrete (finite, deterministic) dynamical systems

Discrete (finite, deterministic) dynamical systems

Discrete (finite, deterministic) dynamical systems

Discrete (finite, deterministic) dynamical systems up to isomorphisms

Discrete (finite, deterministic) dynamical systems up to isomorphisms

Discrete (finite, deterministic) dynamical systems up to isomorphisms

An example from engineering

Traffic lights

敫

Traffic lights

Traffic lights

Traffic lights

Traffic lights

An example from science

A planetary system

Evolution in time

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

What if our instruments are less sophisticated?

Abstract evolution of the system

Abstract evolution of the system

Product of dynamical systems

Product of systems

Give temporary names to the states

$=$

Compute the

 Cartesian product

 Cartesian product}

Add the arcs between states

Forget the names once again

Back to our

planetary system

Decomposition

Decomposition

Decomposition

Any other decomposition?

Another decomposition

Another decomposition

Another decomposition

More concretely...

More concretely...

6 months

More concretely...

More concretely...

6 months

Untangling complex systems

Traffic lights at a crossroads

More abstractly...

-

+ and \times behave as with nonnegative integers (a commutative semiring)

+ and \times behave as with nonnegative integers (a commutative semiring)

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$

+ and \times behave as with nonnegative integers (a commutative semiring)

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$

+ and \times behave as with nonnegative integers (a commutative semiring)

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$
- Neutral elements: $\varnothing+X=X$ and $8 \times X=X$

+ and \times behave as with nonnegative integers (a commutative semiring)

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$
- Neutral elements: $\varnothing+X=X$ and $8 \times X=X$
- Distributive: $X \times(Y+Z)=X \times Y+X \times Z$

+ and \times behave as with nonnegative integers (a commutative semiring)

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$
- Neutral elements: $\varnothing+X=X$ and $8 \times X=X$
- Distributive: $X \times(Y+Z)=X \times Y+X \times Z$
- Multiplication by zero: $\varnothing \times X=\varnothing$

Multiplication table

Equations for

decomposing systems

Eqns over dynamical systems

Eqns over dynamical systems

$$
\begin{aligned}
& \overbrace{6}^{9} X+Y^{2}=\int_{6}^{2} \\
& X=6 \\
& Y=\Omega \\
& Z=9
\end{aligned}
$$

Bad news about solving equations !

! Bad news about solving equations !

- There is no algorithm at all for solving general equations! (By reduction from Hilbert's 10th problem)

1 Bad news about

solving equations !

- There is no algorithm at all for solving general equations! (By reduction from Hilbert's 10th problem)
- Equations without variables on one side have an algorithm, but even linear ones of this form are hard to solve (NP-complete):

$$
A_{1} X_{1}+A_{2} X_{2}+\cdots+A_{n} X_{n}=B
$$

4. Bad news about

solving equations !

- There is no algorithm at all for solving general equations! (By reduction from Hilbert's 10th problem)
- Equations without variables on one side have an algorithm, but even linear ones of this form are hard to solve (NP-complete):

$$
A_{1} X_{1}+A_{2} X_{2}+\cdots+A_{n} X_{n}=B
$$

- We are still unsure if equations in one single variable, like $A X=B$, can be solved efficiently (conjecture: no)

Identifying basic building blocks

Scenario

DynaSys Inc.

Scenario

DynaSys Inc.

Scenario

Scenario

0

Scenario

DynaSys Inc.

0
。

Scenario

DynaSys Inc.

0
。

Scenario

DynaSys Inc.

0
0

Scenario

0
。

Scenario

Scenario

No unique factorisation into irreducibles!

\times	\varnothing	C		$C_{0}{ }_{0}$	0.	
\varnothing						
C	\varnothing	C		C^{\square}	0.	
	\varnothing		C_{0}			
C_{0}	\varnothing	$C_{0}{ }_{0}$				
0.	\varnothing	0.		$0 .$	C	

\times	\varnothing	\bigcirc		$Q_{0}{ }_{0}$	0	\bigcirc.
\varnothing	\varnothing	\varnothing	\varnothing		\varnothing	\varnothing
\bigcirc	\varnothing	\bigcirc		c:		
\bigcirc	\varnothing	\bigcirc				
ϱ_{0}^{a}	\varnothing	$Q_{:}^{Q}$				

Multiple factorisations

\times

Multiple factorisations

Multiple factorisations

What do we need in our warehouse?

What do we need in our warehouse?

- Decompose our system A as a product of smaller, irreducible systems $A=A_{1} \times A_{2} \times \cdots \times A_{n}$

What do we need in our warehouse?

- Decompose our system A as a product of smaller, irreducible systems $A=A_{1} \times A_{2} \times \cdots \times A_{n}$
- But in general there are multiple ways of doing that: $A=B_{1} \times B_{2} \times \cdots \times B_{m}$

What do we need in our warehouse?

- Decompose our system A as a product of smaller, irreducible systems $A=A_{1} \times A_{2} \times \cdots \times A_{n}$
- But in general there are multiple ways of doing that: $A=B_{1} \times B_{2} \times \cdots \times B_{m}$
- So $A_{1}, A_{2}, \ldots, A_{n}$ might all be replaceable

Prime systems

Prime systems

- A prime is a system P such that, whenever it appears in a factorisation into irreducibles of $A \times B$, it appears in the factorisation of either A or B

Prime systems

- A prime is a system P such that, whenever it appears in a factorisation into irreducibles of $A \times B$, it appears in the factorisation of either A or B
- In other words, if P divides $A \times B$ then it divides A or B

Prime systems

- A prime is a system P such that, whenever it appears in a factorisation into irreducibles of $A \times B$, it appears in the factorisation of either A or B
- In other words, if P divides $A \times B$ then it divides A or B
- If a prime appears in one factorisation of a system, then it appears in all the others as well (it is irreplaceable)

Prime systems

- A prime is a system P such that, whenever it appears in a factorisation into irreducibles of $A \times B$, it appears in the factorisation of either A or B
- In other words, if P divides $A \times B$ then it divides A or B
- If a prime appears in one factorisation of a system, then it appears in all the others as well (it is irreplaceable)
- So we want at least all primes in our warehouse (even though that's not enough...)

Primes are not sufficient

Finding primes

Finding primes

- We haven't been able to find even a single prime yet!

Finding primes

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though

Finding primes

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though
- This guy here? We don't know if it's prime or not!

Finding primes

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though
- This guy here? We don't know if it's prime or not!
- A counterexample to the primality of P is two systems A, B such that P divides $A \times B$ but neither A nor B

Finding primes

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though
- This guy here? We don't know if it's prime or not!
- A counterexample to the primality of P is two systems A, B such that P divides $A \times B$ but neither A nor B
- Those A and B can be much bigger than P, but we don't know how much, so no algorithm yet...

What do primes look like, if they exist at all?

What do primes look like, if they exist at all?

What do primes look like, if they exist at all?

- Connected

What do primes look like, if they exist at all?

- Connected
- Fixed point (no cycles of length >1)

What do primes look like, if they exist at all?

- Connected
- Fixed point (no cycles of length >1)
- gcd of the number of predecessors across all states must be 1

Future developments

Future developments

- Find more solvable equations, and at least one class of equations that is solvable efficiently

Future developments

- Find more solvable equations, and at least one class of equations that is solvable efficiently
- How many solutions for a given equation? E.g., $A X=B$ has at most one if B is connected (new result!)

Future developments

- Find more solvable equations, and at least one class of equations that is solvable efficiently
- How many solutions for a given equation? E.g., $A X=B$ has at most one if B is connected (new result!)
- An enumeration algorithm for dynamical systems up to isomorphism, to find examples and counterexamples (almost done)

Future developments

- Find more solvable equations, and at least one class of equations that is solvable efficiently
- How many solutions for a given equation? E.g., $A X=B$ has at most one if B is connected (new result!)
- An enumeration algorithm for dynamical systems up to isomorphism, to find examples and counterexamples (almost done)
- Find out if prime systems exist, or at least find a primality algorithm!

Bibliography

- A. Dennunzio, V. Dorigatti, E. Formenti, L. Manzoni, A.E. Porreca, Polynomial equations over finite, discrete-time dynamical systems
- F. Doré, E. Formenti, A.E. Porreca, S. Riva, Algorithmic reconstruction of discrete dynamics (and its bibliography)
- É. Naquin, M. Gadouleau, Factorisation in the semiring of finite dynamical systems (new and fresh)
- A.E. Porreca, E. Timofeeva, Efficient generation of functional digraphs up to isomorphism (soon)

Thanks for your attention! Any questions?

