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An example 
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An example 
from science
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What if our instruments 
are less sophisticated?
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Abstract evolution 
of the system

14



Abstract evolution 
of the system

× =

14



Product of 
dynamical systems

15



Product of systems

× =

16



Give temporary names 
to the states

c

a
b

1

2× =

17



Compute the 
Cartesian product

c,1

c,2

a,2
b,2

a,1
b,1

c

a
b

1

2× =

18



Add the arcs between states

c,1

c,2

a,2
b,2

a,1
b,1

c

a
b

1

2× =

19



Forget the names once again
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Back to our 
planetary system
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Any other 
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Untangling complex 
systems
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 and  behave as with nonnegative 
integers (a commutative semiring)

+ ×

• Commutative:  and X + Y = Y + X X × Y = Y × X

• Associative:  and X + (Y + Z) = (Y + X) + Z
X × (Y × Z) = (Y × X) × Z

• Neutral elements:  and ∅ + X = X × X = X

• Distributive: X × (Y + Z) = X × Y + X × Z

• Multiplication by zero: ∅ × X = ∅
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Multiplication table
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Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3
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Equations for 
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Eqns over dynamical systems
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⚠ Bad news about 
solving equations ⚠

• There is no algorithm at all for solving general equations! 
(By reduction from Hilbert’s 10th problem)

• Equations without variables on one side have an 
algorithm, but even linear ones of this form are hard to 
solve (NP-complete):

A1X1 + A2X2 + ⋯ + AnXn = B

• We are still unsure if equations in one single variable, 
like , can be solved efficiently (conjecture: no)AX = B
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Identifying basic 
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No unique factorisation 
into irreducibles!
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Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to
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• Decompose our system  as a product of smaller, 
irreducible systems 

A
A = A1 × A2 × ⋯ × An

• But in general there are multiple ways of doing that: 
A = B1 × B2 × ⋯ × Bm

• So  might all be replaceableA1, A2, …, An
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Prime systems
• A prime is a system  such that, whenever it appears 

in a factorisation into irreducibles of , 
it appears in the factorisation of either  or 

P
A × B

A B

• In other words, if  divides  then it divides  or P A × B A B

• If a prime appears in one factorisation of a system,  
then it appears in all the others as well (it is irreplaceable)

• So we want at least all primes in our warehouse 
(even though that’s not enough…)
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Finding primes
• We haven’t been able to find even a single prime yet!

• We have found infinitely many non-primes though

• This guy here?           We don’t know if it’s prime or not!

• A counterexample to the primality of  is two systems 
 such that  divides  but neither  nor 

P
A, B P A × B A B

• Those  and  can be much bigger than , 
but we don’t know how much, so no algorithm yet…

A B P

51



What do primes look like, 
if they exist at all?

52



What do primes look like, 
if they exist at all?

52



What do primes look like, 
if they exist at all?

• Connected

52



What do primes look like, 
if they exist at all?

• Connected

• Fixed point (no cycles 
of length )> 1

52



What do primes look like, 
if they exist at all?

• Connected

• Fixed point (no cycles 
of length )> 1

• gcd of the number 
of predecessors across 
all states must be 1
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Future developments
• Find more solvable equations, and at least one class 

of equations that is solvable efficiently

• How many solutions for a given equation? E.g., 
 has at most one if  is connected (new result!)AX = B B

• An enumeration algorithm for dynamical systems 
up to isomorphism, to find examples and 
counterexamples (almost done)

• Find out if prime systems exist, or at least find 
a primality algorithm!
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Thanks for your attention! 
Any questions?


