Analysis of discrete dynamical systems An algebraic perspective

Antonio E. Porreca • aeporreca.org Aix-Marseille Université & LIS

Discrete (finite, deterministic) dynamical systems

Discrete (finite, deterministic) dynamical systems

Discrete (finite, deterministic) dynamical systems

Discrete (finite, deterministic) dynamical systems up to isomorphisms

Discrete (finite, deterministic) dynamical systems up to isomorphisms

Discrete (finite, deterministic) dynamical systems up to isomorphisms

An example from engineering

An example from science

A planetary system

What if our instruments are less sophisticated?

Abstract evolution of the system

Abstract evolution of the system

Product of dynamical systems

Product of systems

Give temporary names to the states

Compute the Cartesian product

Add the arcs between states

Forget the names once again

Back to our planetary system

Decomposition

Decomposition

Any other decomposition?

Another decomposition

Another decomposition

Another decomposition

Untangling complex systems

29

Traffic lights at a crossroads

More abstractly...

• Commutative: X + Y = Y + X and $X \times Y = Y \times X$

- Commutative: X + Y = Y + X and $X \times Y = Y \times X$
- Associative: X + (Y + Z) = (Y + X) + Z and $X \times (Y \times Z) = (Y \times X) \times Z$

- Commutative: X + Y = Y + X and $X \times Y = Y \times X$
- Associative: X + (Y + Z) = (Y + X) + Z and $X \times (Y \times Z) = (Y \times X) \times Z$
- Neutral elements: $\emptyset + X = X$ and $\heartsuit \times X = X$

- Commutative: X + Y = Y + X and $X \times Y = Y \times X$
- Associative: X + (Y + Z) = (Y + X) + Z and $X \times (Y \times Z) = (Y \times X) \times Z$
- Neutral elements: $\emptyset + X = X$ and $\heartsuit \times X = X$
- Distributive: $X \times (Y + Z) = X \times Y + X \times Z$

- Commutative: X + Y = Y + X and $X \times Y = Y \times X$
- Associative: X + (Y + Z) = (Y + X) + Z and $X \times (Y \times Z) = (Y \times X) \times Z$
- Neutral elements: $\emptyset + X = X$ and $\heartsuit \times X = X$
- Distributive: $X \times (Y + Z) = X \times Y + X \times Z$
- Multiplication by zero: $\emptyset \times X = \emptyset$

Multiplication table

×	Ø						
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
C•	Ø	\bigcirc					C.
	Ø						
	Ø						
	Ø						
	Ø						
(To the	Ø	(to the total design of t	34				

Equations for decomposing systems

Eqns over dynamical systems

 $X + Y^2 = \int Z + \int Z$

Eqns over dynamical systems

 $X = \bigvee Y = \bigvee Z = \bigvee$

 There is no algorithm at all for solving general equations! (By reduction from Hilbert's 10th problem)

- There is no algorithm at all for solving general equations! (By reduction from Hilbert's 10th problem)
- Equations without variables on one side have an algorithm, but even linear ones of this form are hard to solve (NP-complete):

$$A_1X_1 + A_2X_2 + \dots + A_nX_n = B$$

- There is no algorithm at all for solving general equations! (By reduction from Hilbert's 10th problem)
- Equations without variables on one side have an algorithm, but even linear ones of this form are hard to solve (NP-complete):

$$A_1X_1 + A_2X_2 + \dots + A_nX_n = B$$

• We are still unsure if equations in one single variable, like AX = B, can be solved efficiently (conjecture: no)

Identifying basic building blocks

DynaSys Inc.

DynaSys Inc.

DynaSys Inc.

DynaSys Inc.

O

DynaSys Inc.

O

DynaSys Inc.

O

No unique factorisation into irreducibles!

×	Ø						
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
C•	Ø	\bigcirc					C.
	Ø						
	Ø						
	Ø		•				
	Ø						
	Ø	Cronorda a					

Multiple factorisations

Multiple factorisations

Multiple factorisations

• Decompose our system A as a product of smaller, irreducible systems $A = A_1 \times A_2 \times \cdots \times A_n$

- Decompose our system A as a product of smaller, irreducible systems $A = A_1 \times A_2 \times \cdots \times A_n$
- But in general there are multiple ways of doing that: $A = B_1 \times B_2 \times \cdots \times B_m$

- Decompose our system A as a product of smaller, irreducible systems $A = A_1 \times A_2 \times \cdots \times A_n$
- But in general there are multiple ways of doing that: $A = B_1 \times B_2 \times \cdots \times B_m$
- So A_1, A_2, \ldots, A_n might all be replaceable

 A prime is a system *P* such that, whenever it appears in a factorisation into irreducibles of *A* × *B*, it appears in the factorisation of either *A* or *B*

- A prime is a system P such that, whenever it appears in a factorisation into irreducibles of A × B,
 it appears in the factorisation of either A or B
- In other words, if P divides $A \times B$ then it divides A or B

- A prime is a system *P* such that, whenever it appears in a factorisation into irreducibles of *A* × *B*, it appears in the factorisation of either *A* or *B*
- In other words, if P divides $A \times B$ then it divides A or B
- If a prime appears in one factorisation of a system, then it appears in all the others as well (it is irreplaceable)

- A prime is a system *P* such that, whenever it appears in a factorisation into irreducibles of *A* × *B*, it appears in the factorisation of either *A* or *B*
- In other words, if P divides $A \times B$ then it divides A or B
- If a prime appears in one factorisation of a system, then it appears in all the others as well (it is irreplaceable)
- So we want at least all primes in our warehouse (even though that's not enough...)

Primes are not sufficient

• We haven't been able to find even a single prime yet!

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though
- This guy here? We don't know if it's prime or not!

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though
- This guy here? We don't know if it's prime or not!
- A counterexample to the primality of P is two systems A, B such that P divides $A \times B$ but neither A nor B

- We haven't been able to find even a single prime yet!
- We have found infinitely many non-primes though
- This guy here? We don't know if it's prime or not!
- A counterexample to the primality of P is two systems A, B such that P divides $A \times B$ but neither A nor B
- Those *A* and *B* can be much bigger than *P*, but we don't know how much, so no algorithm yet...

Connected

- Connected
- Fixed point (no cycles of length > 1)

- Connected
- Fixed point (no cycles of length > 1)
- gcd of the number of predecessors across all states must be 1

• Find more solvable equations, and at least one class of equations that is solvable efficiently

- Find more solvable equations, and at least one class of equations that is solvable efficiently
- How many solutions for a given equation? E.g., AX = B has at most one if *B* is connected (new result!)

- Find more solvable equations, and at least one class of equations that is solvable efficiently
- How many solutions for a given equation? E.g., AX = B has at most one if *B* is connected (new result!)
- An enumeration algorithm for dynamical systems up to isomorphism, to find examples and counterexamples (almost done)

- Find more solvable equations, and at least one class of equations that is solvable efficiently
- How many solutions for a given equation? E.g., AX = B has at most one if *B* is connected (new result!)
- An enumeration algorithm for dynamical systems up to isomorphism, to find examples and counterexamples (almost done)
- Find out if prime systems exist, or at least find a primality algorithm!

Bibliography

- A. Dennunzio, V. Dorigatti, E. Formenti, L. Manzoni, A.E. Porreca, Polynomial equations over finite, discrete-time dynamical systems
- F. Doré, E. Formenti, A.E. Porreca, S. Riva, Algorithmic reconstruction of discrete dynamics (and its bibliography)
- É. Naquin, M. Gadouleau, Factorisation in the semiring of finite dynamical systems (new and fresh)
- A.E. Porreca, E. Timofeeva, Efficient generation of functional digraphs up to isomorphism (soon

Thanks for your attention! Any questions?