Bio-inspired computation, communication topologies, and computational complexity

Antonio E. Porreca
https://aeporreca.org

- The first and second machine classes
- Examples of parallel computing models
- Membrane systems
- Complexity theory of membrane systems
- Communication topologies and their role
- A research project

The first machine class

Definition (van Emde Boas). A machine model is first class iff it simulates and is simulated by a Turing machine in polynomial time

- Turing machines
- Random access machines with + and -
- Cellular automata with finite initial configuration

The second machine class

> Definition (van Emde Boas). A machine model is second class iff it characterises PSPACE in polynomial time (deterministically and nondeterministically)

- Alternating Turing machines
- Vector machines
- Random access machines with $+-\times \div$
- Parallel processes with fork() with unbounded number of processors
- Cellular automata over hyperbolic grids

Nondeterministic Turing machine

Nondeterministic Turing machine

Alternating Turing machine

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0 https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0 https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0 https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0 https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0 https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0 https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0 https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0 https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0 https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

First and second machine class

Many "concrete" sequential and parallel computing models are either first or second class machines

Membrane systems

Simple chemical reactions

$$
a b \rightarrow c d
$$

Simple chemical reactions

$$
a b \rightarrow c d
$$

Communication between regions

$$
a[b c] \rightarrow[d] e
$$

Communication between regions

$$
a[b c] \rightarrow[d] e
$$

Monodirectional communication between regions

$$
[a] \rightarrow[] b
$$

Monodirectional communication between regions

$$
[a] \rightarrow[] b
$$

Membrane division

$$
[a] \rightarrow[b][c]
$$

Membrane division

$$
[a] \rightarrow[b][c]
$$

Elementary membrane division

$$
[a] \rightarrow[b][c]
$$

Elementary membrane division

$$
[a] \rightarrow[b][c]
$$

Register/counter machines

1: $\operatorname{dec} x, 2,4$
2: inc $y, 3$
3: inc y, 1
4: halt

Register/counter machines

1: $\operatorname{dec} x, 2,4$
2: inc $y, 3$
3: inc y, 1
4: halt

$x \quad x \quad x \quad x$
 $y \quad y$
 p_{1}

Register/counter machines

1: $\operatorname{dec} x, 2,4$
2: inc $y, 3$
3: inc y, 1
4: halt

$\begin{array}{llll}x & x & x\end{array}$

$y \quad y$
p_{1}

Register/counter machines

(Semi-)uniform families of membrane systems

Simulating Turing machines efficiently

Simulating Turing machines efficiently

Simulating Turing machines efficiently

$$
\delta(q, b)=\left(q^{\prime}, a,+1\right)
$$

Simulating Turing machines efficiently

$$
\delta(q, b)=\left(q^{\prime}, a,+1\right)
$$

$$
q_{i} b_{i} \rightarrow q_{i+1}^{\prime} a_{i} \quad 1 \leq i \leq n
$$

Simulating Turing machines efficiently

$$
\delta(q, b)=\left(q^{\prime}, a,+1\right)
$$

$$
q_{i} b_{i} \rightarrow q_{i+1}^{\prime} a_{i} \quad 1 \leq i \leq n
$$

Simulating nondeterministic Turing machines

Simulating nondeterministic Turing machines

Simulating nondeterministic Turing machines

Simulating nondeterministic Turing machines

Simulating nondeterministic Turing machines

Simulating nondeterministic Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

Simulating alternating Turing machines

The polynomial hierarchy

(Semi-)uniform families of membrane systems

The polynomial hierarchy

$$
\bullet \longrightarrow P
$$

$$
\text { 回 } \xrightarrow{\text { includes }} \mathrm{NP}
$$

PH

Simulating Turing machines with oracles

The polynomial hierarchy

$$
\bullet \longrightarrow P
$$

$$
\text { 回 } \xrightarrow{\text { includes }} \mathrm{NP}
$$

PH

The polynomial hierarchy

$$
\bullet \longrightarrow P^{P}=P
$$

Nondeterministic Turing machine

Nondeterministic Turing machine

Counting Turing machine

Counting Turing machine

Counting Turing machine

Counting Turing machine

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

2

Simulating counting Turing machines

2

2

Simulating counting Turing machines

Simulating counting Turing machines

Simulating Turing machines with \#P oracles

Simulating Turing machines with \#P oracles

Simulating Turing machines with \#P oracles

Simulating Turing machines with \#P oracles

Simulating Turing machines with \#P oracles

Simulating Turing machines with \#P oracles

Simulating Turing machines with \#P oracles

2
2

Simulating Turing machines with \#P oracles

Simulating Turing machines with \#P oracles

Simulating Turing machines with \#P oracles

4

Simulating Turing machines with \#P oracles

4

Simulating Turing machines with \#P oracles

The counting hierarchy

The counting hierarchy

Toda's
Theorem

Exact characterisation of $\mathrm{p}^{\# P}$

Exact characterisation of $\mathrm{P}^{\# \mathrm{P}}$

Exact characterisation of $\mathrm{p}^{\# P}$

Query simulating dividing membranes

If the dividing membranes receive the sequence of inputs (m_{1}, \ldots, m_{t}), how many instances of object a are sent out at time $t+1$?

Query simulating dividing membranes

If the dividing membranes receive the sequence of inputs (m_{1}, \ldots, m_{t}), how many instances of object a are sent out at time $t+1$?

Query simulating dividing membranes
If the dividing membranes receive the sequence of inputs (m_{1}, \ldots, m_{t}), how many instances of object a are sent out at time $t+1$?

Query simulating dividing membranes
If the dividing membranes receive the sequence of inputs (m_{1}, \ldots, m_{t}), how many instances of object a are sent out at time $t+1$?

Query simulating dividing membranes
If the dividing membranes receive the sequence of inputs (m_{1}, \ldots, m_{t}), how many instances of object a are sent out at time $t+1$?

Query simulating dividing membranes
If the dividing membranes receive the sequence of inputs (m_{1}, \ldots, m_{t}), how many instances of object a are sent out at time $t+1$?

Query simulating dividing membranes
If the dividing membranes receive the sequence of inputs (m_{1}, \ldots, m_{t}), how many instances of object a are sent out at time $t+1$?

Exact characterisation of $\mathrm{P}^{\# \mathrm{P}}$

Theorem. Membrane systems where membranes can only divide if they do not contain recursively other membranes characterise $\mathrm{P}^{\# \mathrm{P}}$ in polynomial time

Solving PSPACE efficiently in the "binary tree space"

Solving PSPACE efficiently in the "binary tree space"

Solving PSPACE efficiently in the "binary tree space"

Solving PSPACE efficiently in the "binary tree space"

Solving PSPACE efficiently in the "binary tree space"

Solving PSPACE efficiently in the "binary tree space"

Communication topologies and complexity classes

P

PSPACE

P\#P

Automata networks over infinite graphs

Automata networks over infinite graphs

Automata networks over infinite graphs

1D cellular automata as generalised Turing machines

1D cellular automata as generalised Turing machines

Things to do

- Choose restrictions on the class of local transition functions f : Multisets $(Q) \rightarrow Q$ e.g., threshold functions
- Choose a way to encode the input in the initial configuration

Defining new complexity classes

Definition. Given an infinite graph G, let

- $P(G)$ be the problems solved by automata networks over G in polynomial time
- $\operatorname{PSPACE}(G)=$ polynomial space over G
- $\operatorname{EXPTIME}(G)=$ exponential time over G
- etc.
but also
- LOGTIME $(G)=$ logarithmic time over G
- etc.
because automata networks are parallel

Preliminary results

- $\mathbf{P}($ linear graph $)=\mathbf{P}$
- PSPACE(linear graph) = PSPACE
because of the equivalence with Turing machines
- $\mathbf{P}\left(\right.$ efficiently computable graph in $\left.\mathbf{R}^{d}\right)=\mathbf{P}$

Expected results

- P(infinite binary tree) = PSPACE
- \mathbf{P} (infinite star or variant thereof) $=\mathbf{P}^{\# \mathbf{P}}$

- P(non-computable graph) includes undecidable problems

Hopeful developments of the theory

- Find graphs (or classes of graphs) characterising all standard complexity classes
- Find new intermediate complexity classes using "natural" graphs

Hopeful developments of the theory

- Find graphs (or classes of graphs) characterising all standard complexity classes
- Find new intermediate complexity classes using "natural" graphs
- Find algorithms working on all graphs or on certain classes of graphs
- Discover how graph-theoretic or geometric properties of the graphs can speed up or slow down algorithms e.g., algorithms running in time $\Theta\left(n^{f(d)}\right)$ in \mathbf{R}^{d}

Applications

- Same applications as automata networks (e.g., biology)
- Theory (and practice) of distributed algorithms
- Low-level hardware design
- Machine learning (variants of deep learning? non-Euclidean learning?)
and, of course
- Computability and complexity theory

Thanks for your attention! Merci de votre attention!

Any questions?

