Bio-inspired computation, communication topologies, and computational complexity

Antonio E. Porreca https://aeporreca.org

Outline

- The first and second machine classes
- Examples of parallel computing models
- Membrane systems
- Complexity theory of membrane systems
- Communication topologies and their role
- A research project

Definition (van Emde Boas). A machine model is first class iff it simulates and is simulated by a Turing machine in polynomial time

- Turing machines
- Random access machines with + and -
- Cellular automata with finite initial configuration

Definition (van Emde Boas). A machine model is second class iff it characterises **PSPACE** in polynomial time (deterministically and nondeterministically)

- Alternating Turing machines
- Vector machines
- Random access machines with + \times ÷
- Parallel processes with fork() with unbounded number of processors
- Cellular automata over hyperbolic grids

Nondeterministic Turing machine

Alternating Turing machine

First and second machine class

Many "concrete" sequential and parallel computing models are either first or second class machines

Membrane systems

Simple chemical reactions

 $ab \rightarrow cd$

Simple chemical reactions

 $ab \rightarrow cd$

Communication between regions

 $a \, [bc] \rightarrow [d] \, e$

Communication between regions

$a [bc] \rightarrow [d] e$

Monodirectional communication between regions

[a]
ightarrow [] b

Monodirectional communication between regions

[a]
ightarrow [] b

Membrane division

Membrane division

Elementary membrane division

Elementary membrane division

1: dec *x*, 2, 4 2: inc *y*, 3 3: inc *y*, 1 4: halt

1: dec *x*, 2, 4 2: inc *y*, 3 3: inc *y*, 1 4: halt

(Semi-)uniform families of membrane systems

Simulating Turing machines efficiently

Simulating Turing machines efficiently

Simulating Turing machines efficiently

$$\delta(q,b) = (q',a,+1)$$

Simulating Turing machines efficiently

q₃ *a*l \Box_5 *a*₄

 $\delta(q, b) = (q', a, +1)$

 $q_i \ b_i \rightarrow q'_{i+1} \ a_i \quad 1 \leq i \leq n$

Simulating Turing machines efficiently

q3 *a*1 5 **b**₃ b_2 *a*₄

$$\delta(q,b) = (q',a,+1)$$

 $q_i \ b_i \rightarrow q'_{i+1} \ a_i \quad 1 \leq i \leq n$

The polynomial hierarchy

(Semi-)uniform families of membrane systems

The polynomial hierarchy

The polynomial hierarchy

The polynomial hierarchy

Nondeterministic Turing machine

Counting Turing machine

Counting Turing machine

Counting Turing machine

0

0

The counting hierarchy

Exact characterisation of $P^{\#P}$

Exact characterisation of P^{#P}

Exact characterisation of P^{#P}

If the dividing membranes receive the sequence of inputs $(m_1, ..., m_t)$, how many instances of object *a* are sent out at time t + 1?

time

time

time

time

time

Exact characterisation of P^{#P}

Theorem. Membrane systems where membranes can only divide if they do not contain recursively other membranes characterise $P^{\#P}$ in polynomial time

Communication topologies and complexity classes

Automata networks over infinite graphs

Automata networks over infinite graphs

Automata networks over infinite graphs

1D cellular automata as generalised Turing machines

1D cellular automata as generalised Turing machines

Things to do

- Choose restrictions on the class of local transition functions f: Multisets(Q) $\rightarrow Q$ e.g., threshold functions
- Choose a way to encode the input in the initial configuration

Defining new complexity classes

Definition. Given an infinite graph G, let

- **P**(*G*) be the problems solved by automata networks over *G* in polynomial time
- PSPACE(G) = polynomial space over G
- **EXPTIME**(G) = exponential time over G
- etc.

but also

- LOGTIME(G) = logarithmic time over G
- etc.

because automata networks are parallel

Preliminary results

- P(linear graph) = P
- **PSPACE**(linear graph) = **PSPACE**

because of the equivalence with Turing machines

• P(efficiently computable graph in \mathbf{R}^d) = P

Expected results

- **P**(infinite binary tree) = **PSPACE**
- P(infinite star or variant thereof) = $P^{\#P}$

• P(non-computable graph) includes undecidable problems

Hopeful developments of the theory

- Find graphs (or classes of graphs) characterising all standard complexity classes
- Find new intermediate complexity classes using "natural" graphs

Hopeful developments of the theory

- Find graphs (or classes of graphs) characterising all standard complexity classes
- Find new intermediate complexity classes using "natural" graphs
- Find algorithms working on all graphs or on certain classes of graphs
- Discover how graph-theoretic or geometric properties of the graphs can speed up or slow down algorithms e.g., algorithms running in time $\Theta(n^{f(d)})$ in \mathbf{R}^d

Applications

- Same applications as automata networks (e.g., biology)
- Theory (and practice) of distributed algorithms
- Low-level hardware design
- Machine learning (variants of deep learning? non-Euclidean learning?)

and, of course

• Computability and complexity theory

Thanks for your attention! Merci de votre attention!

Any questions?