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The �rst machine class

De�nition (van Emde Boas). A machine model is
�rst class i� it simulates and is simulated by a Turing
machine in polynomial time

• Turing machines
• Random access machines with + and −
• Cellular automata with �nite initial con�guration



The second machine class

De�nition (van Emde Boas). A machine model is
second class i� it characterises PSPACE in polynomial
time (deterministically and nondeterministically)

• Alternating Turing machines
• Vector machines
• Random access machines with +−×÷
• Parallel processes with fork() with unbounded
number of processors

• Cellular automata over hyperbolic grids
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Alternating Turing machine
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Hyperbolic CAs
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First and second machine class

Many “concrete” sequential and parallel computing
models are either �rst or second class machines



Membrane systems
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Simple chemical reactions
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Communication between regions
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Monodirectional communication between regions
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Membrane division
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Elementary membrane division

[a]→ [b] [c]

a d

e d



Elementary membrane division
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Register/counter machines

1: dec x , 2, 4
2: inc y, 3
3: inc y, 1
4: halt
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Register/counter machines

1: dec x , 2, 4
2: inc y, 3
3: inc y, 1
4: halt

p2 → y p3

x x x x
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Register/counter machines

1: dec x , 2, 4
2: inc y, 3
3: inc y, 1
4: halt

p2 → y p3

p1 → p′1 x

x x → x ′

p′1 → p′′1

p′′1 x
′ → p2

p′′1 x → p4x x x x

y y p1



(Semi-)uniform families of membrane systems
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Simulating Turing machines e�ciently
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Simulating Turing machines e�ciently
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Simulating nondeterministic Turing machines
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Simulating nondeterministic Turing machines
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Simulating alternating Turing machines
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Simulating alternating Turing machines
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Simulating Turing machines with oracles
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Simulating Turing machines with oracles



Simulating Turing machines with oracles

result



Simulating Turing machines with oracles
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The polynomial hierarchy

... ......

PP = P
PNP ⊇ NP
PNP

NP
⊇ NPNP

PNP
NPNP

⊇ NP
NPNP

...
PPSPACE = PSPACE

includes
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Simulating counting Turing machines
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Simulating counting Turing machines
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The counting hierarchy
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Exact characterisation of P#P
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Query simulating dividing membranes

If the dividing membranes receive the sequence
of inputs (m1, ... ,mt ), how many instances of object a
are sent out at time t + 1?
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Exact characterisation of P#P

Theorem. Membrane systems where membranes
can only divide if they do not contain recursively
other membranes characterise P#P in polynomial
time
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Communication topologies and complexity classes

P

PSPACE

P#P
· · ·



Automata networks over in�nite graphs
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Automata networks over in�nite graphs

f : Multisets(Q)→ Q



1D cellular automata as generalised Turing machines
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1D cellular automata as generalised Turing machines
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Things to do

• Choose restrictions on the class
of local transition functions f : Multisets(Q)→ Q
e.g., threshold functions

• Choose a way to encode the input in the initial
con�guration



De�ning new complexity classes

De�nition. Given an in�nite graph G , let
• P(G) be the problems solved by automata
networks over G in polynomial time

• PSPACE(G) = polynomial space over G
• EXPTIME(G) = exponential time over G
• etc.

but also

• LOGTIME(G) = logarithmic time over G
• etc.

because automata networks are parallel



Preliminary results

• P(linear graph) = P
• PSPACE(linear graph) = PSPACE

because of the equivalence with Turing machines

• P(e�ciently computable graph in Rd ) = P



Expected results

• P(in�nite binary tree) = PSPACE
• P(in�nite star or variant thereof) = P#P

· · ·

• P(non-computable graph) includes
undecidable problems



Hopeful developments of the theory

• Find graphs (or classes of graphs) characterising
all standard complexity classes

• Find new intermediate complexity classes using
“natural” graphs



Hopeful developments of the theory

• Find graphs (or classes of graphs) characterising
all standard complexity classes

• Find new intermediate complexity classes using
“natural” graphs

• Find algorithms working on all graphs
or on certain classes of graphs

• Discover how graph-theoretic or
geometric properties of the graphs can
speed up or slow down algorithms
e.g., algorithms running in time Θ(nf (d )) in Rd



Applications

• Same applications as automata networks
(e.g., biology)

• Theory (and practice) of distributed algorithms
• Low-level hardware design
• Machine learning (variants of deep learning?
non-Euclidean learning?)

and, of course

• Computability and complexity theory



Thanks for your attention!
Merci de votre attention!

Any questions?


