
Bio-inspired computation,
communication topologies,
and computational complexity

Antonio E. Porreca
https://aeporreca.org

Outline

• The �rst and second machine classes
• Examples of parallel computing models
• Membrane systems
• Complexity theory of membrane systems
• Communication topologies and their role
• A research project

The �rst machine class

De�nition (van Emde Boas). A machine model is
�rst class i� it simulates and is simulated by a Turing
machine in polynomial time

• Turing machines
• Random access machines with + and −
• Cellular automata with �nite initial con�guration

The second machine class

De�nition (van Emde Boas). A machine model is
second class i� it characterises PSPACE in polynomial
time (deterministically and nondeterministically)

• Alternating Turing machines
• Vector machines
• Random access machines with +−×÷
• Parallel processes with fork() with unbounded
number of processors

• Cellular automata over hyperbolic grids

Nondeterministic Turing machine

∨ ∨ ∨ ∨

∨∨

∨

1 1 10 0 0 0 0

1

Nondeterministic Turing machine

∨ ∨ ∨ ∨

∨∨

∨

1 1 10 0 0 0 0

1

1 1 10 0 0 0 0

1

∨

Alternating Turing machine

∨ ∨

∨

∨

1 1 10 0 0 0 0

0

∧

∧

∧

Hyperbolic tiling by Theon, used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

Hyperbolic tiling by Theon, used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/File:PavageHypPoincare2.svg

Hyperbolic CAs

PSPACE

First and second machine class

Many “concrete” sequential and parallel computing
models are either �rst or second class machines

Membrane systems

a
a
a

b b c

c

b
a

aa b

Simple chemical reactions

ab→ cd

a
a

a

b
b

b c

Simple chemical reactions

ab→ cd

a
a

a

b
b

b c c d c

c
c d
d

Communication between regions

a [bc]→ [d] e

a

a

b

b

b

c

c
ca

Communication between regions

a [bc]→ [d] e

a

a

b

b

b

c

c
c

e

e

b

d

ca a
d

Monodirectional communication between regions

[a]→ [] b

a

a
a

b

Monodirectional communication between regions

[a]→ [] b

a

a
a

b

a

b

b

b

Membrane division

[a]→ [b] [c]

a

d c

dd

Membrane division

[a]→ [b] [c]

a

d c

d

b

d c
d

c

d c
d

d

Elementary membrane division

[a]→ [b] [c]

a d

e d

Elementary membrane division

[a]→ [b] [c]

a d

e d

b d
e d

c d
e d

Register/counter machines

1: dec x , 2, 4
2: inc y, 3
3: inc y, 1
4: halt

Register/counter machines

1: dec x , 2, 4
2: inc y, 3
3: inc y, 1
4: halt

x x x x

y y p1

Register/counter machines

1: dec x , 2, 4
2: inc y, 3
3: inc y, 1
4: halt

p2 → y p3

x x x x

y y p1

Register/counter machines

1: dec x , 2, 4
2: inc y, 3
3: inc y, 1
4: halt

p2 → y p3

p1 → p′1 x

x x → x ′

p′1 → p′′1

p′′1 x
′ → p2

p′′1 x → p4x x x x

y y p1

(Semi-)uniform families of membrane systems

x ∈ Σ?

a
a

b
b

b

c

M

Πx

Simulating Turing machines e�ciently

a ab b

q

Simulating Turing machines e�ciently

a ab b

q

a1
b2 b3 a4

q3

�5 �6

Simulating Turing machines e�ciently

a ab b

q

δ(q, b) = (q′, a, +1)

a1
b2 b3 a4

q3

�5 �6

Simulating Turing machines e�ciently

a ab b

q

δ(q, b) = (q′, a, +1)

a1
b2 b3 a4

q3

�5 �6

qi bi → q′i+1 ai 1 ≤ i ≤ n

Simulating Turing machines e�ciently

a ab b

q

δ(q, b) = (q′, a, +1)

a ab

q′

a

a1
b2 b3 a4

q3

�5 �6

qi bi → q′i+1 ai 1 ≤ i ≤ n

a1
b2 a3 a4

q′4
�5 �6

Simulating nondeterministic Turing machines

a ab b

q

δ(q, b) =

{
(q′, a, +1)
(q′′, b,−1)

[qi bi]→ [q′i+1 ai] [q
′′
i−1 bi]

a1
b2 b3 a4

q3

�5 �6

a1
b2 a3 a4

q′4 �5 �6

a1
b2 b3 a4

q′′2
�5 �6

Simulating nondeterministic Turing machines

Simulating nondeterministic Turing machines

Simulating nondeterministic Turing machines

Simulating nondeterministic Turing machines

Simulating nondeterministic Turing machines

0

0

0

0 1 1

1

1

Simulating alternating Turing machines

Simulating alternating Turing machines

existential
nondeterministic
choice

Simulating alternating Turing machines

existential
nondeterministic
choice

Simulating alternating Turing machines

existential
nondeterministic
choice

∃

Simulating alternating Turing machines

∃

Simulating alternating Turing machines

∃
universal
nondeterministic
choices

Simulating alternating Turing machines

∃
universal
nondeterministic
choices

Simulating alternating Turing machines

∃
universal
nondeterministic
choices

∀ ∀

Simulating alternating Turing machines

∃

∀ ∀

Simulating alternating Turing machines

∃

∀ ∀0 1 1 1

Simulating alternating Turing machines

∃

∀ ∀0 1 1 1

Simulating alternating Turing machines

∃

∀ ∀0 1 1 1

0 1

Simulating alternating Turing machines

∃

∀ ∀0 1 1 1

0 1

1

The polynomial hierarchy

P
NP
NPNP

NPNP
NP

...
PSPACE

...

PH

includes

(Semi-)uniform families of membrane systems

x ∈ Σ?

a
a

b
b

b

c

M

Πx

The polynomial hierarchy

P
NP
NPNP

NPNP
NP

...
PSPACE

PH

...

includes

Simulating Turing machines with oracles

Simulating Turing machines with oracles

query

Simulating Turing machines with oracles

query

Simulating Turing machines with oracles

Simulating Turing machines with oracles

result

Simulating Turing machines with oracles

The polynomial hierarchy

P
NP
NPNP

NPNP
NP

...
PSPACE

PH

...

includes

The polynomial hierarchy

...

PP = P
PNP ⊇ NP
PNP

NP
⊇ NPNP

PNP
NPNP

⊇ NP
NPNP

...
PPSPACE = PSPACE

includes

Nondeterministic Turing machine

∨ ∨ ∨ ∨

∨∨

∨

1 1 10 0 0 0 0

1

Nondeterministic Turing machine

∨ ∨ ∨ ∨

∨∨

∨

1 1 10 0 0 0 0

1

1 1 10 0 0 0 0

1

∨

Counting Turing machine

1 1 10 0 0 0 0

3

+

+

+ + + +

+

Counting Turing machine

1 1 10 0 0 0 0

3

+

+

+ + + +

+

f : Σ? → N

Counting Turing machine

1 1 10 0 0 0 0

3

+

+

+ + + +

+

f : Σ? → N

#P

Counting Turing machine

1 1 10 0 0 0 0

3

1 1 10 0 0 0 0

3

+

+

+ + + +

+

+

f : Σ? → N

#P

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

Simulating counting Turing machines

0 000 1 1
1

1

Simulating counting Turing machines

0 010 1 1
1

1

Simulating counting Turing machines

0 010 1 1
1

1

Simulating counting Turing machines

0 010 1 1
1

1

Simulating counting Turing machines

0 010

2 2

Simulating counting Turing machines

0 010

2 2

Simulating counting Turing machines

0 010

2 2

Simulating counting Turing machines

0 010

4

Simulating counting Turing machines

0 010

4

Simulating Turing machines with #P oracles

Simulating Turing machines with #P oracles

Simulating Turing machines with #P oracles

Simulating Turing machines with #P oracles

Simulating Turing machines with #P oracles

Simulating Turing machines with #P oracles

Simulating Turing machines with #P oracles

Simulating Turing machines with #P oracles

0 000 1 1
1

1

Simulating Turing machines with #P oracles

0 010 1 1
1

1

Simulating Turing machines with #P oracles

0 010 1 1
1

1

Simulating Turing machines with #P oracles

0 010 1 1
1

1

Simulating Turing machines with #P oracles

0 010

2 2

Simulating Turing machines with #P oracles

0 010

2 2

Simulating Turing machines with #P oracles

0 010

2 2

Simulating Turing machines with #P oracles

0 010

4

Simulating Turing machines with #P oracles

0 010

4

Simulating Turing machines with #P oracles

0 010

4

The counting hierarchy

P
NP
NPNP

NPNP
NP

...
PSPACE

PH

...

includes

The counting hierarchy

...

P
P#P ⊇ PH
P#P

#P

P#P
#P#P

...
PSPACE

includes

Toda’s
Theorem

CH

Exact characterisation of P#P

a
b

a

a c

Exact characterisation of P#P

polynomial-time
simulation by TMa

b

a

a c

Exact characterisation of P#P

polynomial-time
simulation by TM

oracle
queries

a
b

a

a c

Query simulating dividing membranes

If the dividing membranes receive the sequence
of inputs (m1, ... ,mt), how many instances of object a
are sent out at time t + 1?

Query simulating dividing membranes

If the dividing membranes receive the sequence
of inputs (m1, ... ,mt), how many instances of object a
are sent out at time t + 1?

tim
e

Query simulating dividing membranes

If the dividing membranes receive the sequence
of inputs (m1, ... ,mt), how many instances of object a
are sent out at time t + 1?

tim
e

Query simulating dividing membranes

If the dividing membranes receive the sequence
of inputs (m1, ... ,mt), how many instances of object a
are sent out at time t + 1?

tim
e

1 0 2 2

Query simulating dividing membranes

If the dividing membranes receive the sequence
of inputs (m1, ... ,mt), how many instances of object a
are sent out at time t + 1?

tim
e

1 0 2 2

2 2
1

Query simulating dividing membranes

If the dividing membranes receive the sequence
of inputs (m1, ... ,mt), how many instances of object a
are sent out at time t + 1?

tim
e

1 0 2 2

2 2
1

41

Query simulating dividing membranes

If the dividing membranes receive the sequence
of inputs (m1, ... ,mt), how many instances of object a
are sent out at time t + 1?

tim
e

1 0 2 2

2 2
1

41

5

Exact characterisation of P#P

Theorem. Membrane systems where membranes
can only divide if they do not contain recursively
other membranes characterise P#P in polynomial
time

Solving PSPACE e�ciently in the “binary tree space”

Solving PSPACE e�ciently in the “binary tree space”

Solving PSPACE e�ciently in the “binary tree space”

Solving PSPACE e�ciently in the “binary tree space”

Solving PSPACE e�ciently in the “binary tree space”

Solving PSPACE e�ciently in the “binary tree space”

Communication topologies and complexity classes

P

PSPACE

P#P
· · ·

Automata networks over in�nite graphs

Automata networks over in�nite graphs

Automata networks over in�nite graphs

f : Multisets(Q)→ Q

1D cellular automata as generalised Turing machines

a ab b

q

· · ·
· · ·

a ab (b, q)

1D cellular automata as generalised Turing machines

a ab b

q

· · ·
· · ·

a ab (b, q)

Things to do

• Choose restrictions on the class
of local transition functions f : Multisets(Q)→ Q
e.g., threshold functions

• Choose a way to encode the input in the initial
con�guration

De�ning new complexity classes

De�nition. Given an in�nite graph G , let
• P(G) be the problems solved by automata
networks over G in polynomial time

• PSPACE(G) = polynomial space over G
• EXPTIME(G) = exponential time over G
• etc.

but also

• LOGTIME(G) = logarithmic time over G
• etc.

because automata networks are parallel

Preliminary results

• P(linear graph) = P
• PSPACE(linear graph) = PSPACE

because of the equivalence with Turing machines

• P(e�ciently computable graph in Rd) = P

Expected results

• P(in�nite binary tree) = PSPACE
• P(in�nite star or variant thereof) = P#P

· · ·

• P(non-computable graph) includes
undecidable problems

Hopeful developments of the theory

• Find graphs (or classes of graphs) characterising
all standard complexity classes

• Find new intermediate complexity classes using
“natural” graphs

Hopeful developments of the theory

• Find graphs (or classes of graphs) characterising
all standard complexity classes

• Find new intermediate complexity classes using
“natural” graphs

• Find algorithms working on all graphs
or on certain classes of graphs

• Discover how graph-theoretic or
geometric properties of the graphs can
speed up or slow down algorithms
e.g., algorithms running in time Θ(nf (d)) in Rd

Applications

• Same applications as automata networks
(e.g., biology)

• Theory (and practice) of distributed algorithms
• Low-level hardware design
• Machine learning (variants of deep learning?
non-Euclidean learning?)

and, of course

• Computability and complexity theory

Thanks for your attention!
Merci de votre attention!

Any questions?

