
Communication topologies
in natural computing

Antonio E. Porreca
https://aeporreca.org



Outline

• The first and secondmachine classes
• Communication topologies and their role
• Membrane computing
• Complexity theory of membrane systems
• A research project



The first machine class and P

The deterministic Turing machine and all models
that simulate and are simulated by it efficiently

• Random access machines with arithmetic
operations + and –

• Cellular automata with finite initial configuration

Van Emde Boas: Machine models and simulations, in Van Leeuwen (ed.), Handbook of
Theoretical Computer Science Volume A: Algorithms and Complexity 1–66, MIT Press, 1990



The secondmachine class and PSPACE

Computing models that solve in polynomial time
what a Turing machine solves in polynomial space

• Alternating Turing machines
• Random access machines with arithmetic
operations + –×÷

• Parallel processes generated by fork()
running on an unbounded number of processors

• Cellular automata over hyperbolic grids

Van Emde Boas: Machine models and simulations, in Van Leeuwen (ed.), Handbook of
Theoretical Computer Science Volume A: Algorithms and Complexity 1–66, MIT Press, 1990



Nondeterministic Turing machines: NP



Nondeterministic Turing machines: NP

1 0 01 1



Alternating Turing machines: PSPACE

1 0 01 1



Cellular automata over a Euclidean grid



Cellular automata over a Euclidean grid



Cellular automata over a Euclidean grid



Cellular automata over a Euclidean grid



Cellular automata over a Euclidean grid

V = Θ(r d)



Hyperbolic cellular automata Pavage du plan hyperbolique par
des heptagones, dans le modèle
du disque de Poincaré. By Theon,
used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg



Hyperbolic cellular automata Pavage du plan hyperbolique par
des heptagones, dans le modèle
du disque de Poincaré. By Theon,
used under CC BY-SA 3.0
https://en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

V = Ω(2r)



Rule of thumb

• Sequential machines are first class
• Bounded parallel machines are first class
• Unbounded parallel machines are second class



Membrane systems (P systems)

a
a
a

a
a
a

a
a

b
b

b

b
b

b

c c

c
c c



Evolution rules and parallel semantics

a
b

c
c a

b c
b
d

e

a b
d e

c



Efficient universality of membrane systems

Alhazov, Leporati, Mauri, Porreca, Zandron: Space complexity equivalence of P systems with
active membranes and Turing machines. Theoretical Computer Science 529, 69–81 (2014)

a

a

b b

a ab b

q

1 2 3 4 5 6

q

$



Membrane systems solving NP problems



Membrane systems solving NP problems

δ(q, a) =

{
(q′, b, +1)
(q′′, c, –1)

[q3 a3] → [q′4 b3] [q′′2 c3]



Membrane systems solving NP problems



Membrane systems solving NP problems



Membrane systems solving NP problems

0

1
1

1

0

0

0

0



Membrane systems are second class

Sosík, Rodríguez-Patón: Membrane computing and complexity theory: A characterization of
PSPACE. Journal of Computer and System Sciences 73(1), 137–152 (2007)



Membrane systems are second class

Sosík, Rodríguez-Patón: Membrane computing and complexity theory: A characterization of
PSPACE. Journal of Computer and System Sciences 73(1), 137–152 (2007)



Membrane systems are second class

Sosík, Rodríguez-Patón: Membrane computing and complexity theory: A characterization of
PSPACE. Journal of Computer and System Sciences 73(1), 137–152 (2007)



Counting Turing machines: #P



Counting Turing machines: #P

1 0 01 1

+ + +

+ +

+f : Σ⋆ → IN



Oracle Turing machines and the class P#P

a ab b

q

f : Σ⋆ → IN



Oracle Turing machines and the class P#P

a ab b

q

f : Σ⋆ → IN

x

f(x)



Oracle Turing machines and the class P#P

a ab b

q

P ⊆ NP ⊆ NPNP ⊆ NPNP
NP ⊆ · · · ⊆ P#P ⊆ PSPACE

Toda’s TheoremPH

f : Σ⋆ → IN

x

f(x)



Oracle Turing machines and the class P#P

P ⊆ NP ⊆ NPNP ⊆ NPNP
NP ⊆ · · · ⊆ P#P ⊆ PSPACE

Toda’s TheoremPH

∃⃗x
ϕ

∃⃗x
∀⃗y
ϕ

∃⃗x
∀⃗y
∃⃗z
ϕ

∃⃗x 1
∀⃗x 2

· · ·
∃⃗x n

ϕ



Shallowmembrane systems solve P#P

Leporati, Manzoni, Mauri, Porreca, Zandron: Characterising the complexity of tissue
P systems with fission rules. Journal of Computer and System Sciences 90, 115–128 (2017)

0

1
1

1

0

0

0

0



Shallowmembrane systems solve P#P

Leporati, Manzoni, Mauri, Porreca, Zandron: Characterising the complexity of tissue
P systems with fission rules. Journal of Computer and System Sciences 90, 115–128 (2017)

0

1
1

1

0

0

0

0



Shallowmembrane systems solve P#P

Leporati, Manzoni, Mauri, Porreca, Zandron: Characterising the complexity of tissue
P systems with fission rules. Journal of Computer and System Sciences 90, 115–128 (2017)



Simulating shallowmembrane systems

Leporati, Manzoni, Mauri, Porreca, Zandron: Characterising the complexity of tissue
P systems with fission rules. Journal of Computer and System Sciences 90, 115–128 (2017)

a ab b

q

f : Σ⋆ → IN

external environment
dividing membranes



Simulating shallowmembrane systems

Leporati, Manzoni, Mauri, Porreca, Zandron: Characterising the complexity of tissue
P systems with fission rules. Journal of Computer and System Sciences 90, 115–128 (2017)

a ab b

q

f : Σ⋆ → IN

external environment
dividing membranes

f(x) = f(x1, . . . , xt, a) =
number of instances of a sent out
at time t + 1 by dividing membranes
which receive input xi at time 1 ≤ i ≤ t



Simulating parallelism nondeterministically



Simulating parallelism nondeterministically

1 0 01 1

+ + +

+ +

+



Shallowmembrane systems and P#P

The complexity class P#P is exactly the class of
problems solved by membrane systems with
shallow (depth 1) division in polynomial time

Leporati, Manzoni, Mauri, Porreca, Zandron: Characterising the complexity of tissue
P systems with fission rules. Journal of Computer and System Sciences 90, 115–128 (2017)



Shallowmembrane systems and P#P

The complexity class P#P is exactly the class of
problems solved by membrane systems with
shallow (depth 1) division in polynomial time

The complexity class P is exactly the class of
problems solved by membrane systems without
division in polynomial time

The complexity class PSPACE is exactly the class of
problems solved by membrane systems with deep
division in polynomial time



Communication topologies and complexity

P

PSPACE

P#P



Communication topologies and complexity

P

PSPACE

P#P



Communication topologies and complexity

P

PSPACE

P#P



Communication topologies and complexity

P

PSPACE

P#P

· · ·



A research project

Investigate the role of communication topologies
in parallel computing models, with a focus on
natural computing

Which graph-theoretic, geometric, descriptive
complexity properties of the communication
topology influence the computational complexity?



Automata networks over infinite graphs



Automata networks over infinite graphs



Automata networks over infinite graphs



Automata networks over infinite graphs

f : Multisets(Q) → Q



b

1D cellular automata as generalised TMs

a ab b

q

a (q, b) a



Descriptive complexity of infinite graphs

G = (V, E)



Descriptive complexity of infinite graphs

G = (V, E)

Σ⋆ IN INd

M(v, i) =

{
i-th neighbour of v
⊥ if it does not exist



Things to do

• Choose restrictions on the local functions
f : Multisets(Q) → Q, e.g., threshold functions

• Choose a bound for the description complexity
of the underlying graph

• Choose a way to encode the input in the initial
configuration



Generalised complexity classes

• P(G) = problems solved in polynomial time over G
• PSPACE(G) = polynomial space over G
• EXPTIME(G) = exponential time over G
• …
• LOGTIME(G) = logarithmic time over G

• NP(G) = nondeterministic polynomial time over G



Preliminary results

• P(G) = P
• PSPACE(G) = PSPACE
• EXPTIME(G) = EXPTIME

where G is the linear graph or, more generally,
an efficiently navigable graph embeddable
in the Euclidean space



Expected results

• P(infinite binary tree) = PSPACE
• P(infinite star or variant) = P#P
• P(non-computable graph) includes
undecidable problems

· · ·



· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Expected results

• P(infinite binary tree) = PSPACE
• P(infinite star or variant) = P#P
• P(non-computable graph) includes
undecidable problems

· · ·



Long-term goals: theory of computation

• Find graphs characterising the standard
complexity classes

• …or prove that it is impossible
• Define new complexity classes in terms
of “natural” graphs

• Examine the complexity of simulating automata
networks over certain graphs



Long-term goals: distributed algorithms

• Find low-level algorithms (local rules) working
with all graphs or certain families of graphs

• …or prove impossibility results
• Investigate how the graph-theoretic and
geometric properties can speed up or slow down
the algorithms

• Example: agorithms running in time Θ(nf(d)) in IRd



Connections with other areas

• Exploit results on the dynamics of automata
networks

• Provide bounds for applications of automata
networks (e.g., biological modelling)

• Theory (and practice) of distributed algorithms
• Machine learning (e.g., “non-Euclidean learning”)
• Attack open problems in complexity theory



Any questions?

Thanks for your attention!
Merci de votre attention !


