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Finite dynamical systems 
and their category



Finite dynamical systems
• A finite dynamical system is just a finite set  with a transition function 


• The category  of finite dynamical systems has


• as objects, the dynamical systems  themselves


• as arrows between  and , the functions  that make the 
diagram commute:


X f : X → X

D

(X, f )

(X, f ) (Y, g) φ : X → Y

X X

Y Y

f

g

φ φ



The category  of 
finite dynamical systems

D

• Has sums (coproducts) and initial objects





• Has products and terminal objects


X 0
!

Y

X1 + X2 X2X1

φ1 φ2φ

ι2ι1

X 1
!

Y

X1 × X2 X2X1

φ1 φ2φ

π2π1



More concretely…



Sum in  = disjoint unionD

+ =



Sum in  = disjoint unionD

+ =



Sum in  = disjoint unionD

+ =

identity =  = , the empty dynamical system0 ∅



Product in  = 
cartesian product

D

× =



Product in  = 
cartesian product
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Product in  = 
cartesian product
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Product in  = 
cartesian product
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Product in  = 
cartesian product

D

× =



Product in  = 
cartesian product

D

× =

identity =  = 1



The semiring of finite 
dynamical systems



The semiring (D, + , × )
• The finite dynamical system modulo isomorphism are 

an infinite set  which is a commutative semiring:


•  is a commutative monoid with identity 


•  is a commutative monoid with identity 


• Distributivity:  


• Absorption: 


• This semiring is not a ring, because there are no additive inverses

D

(D, + ) 0 = ∅

(D, × ) 1 =

x(y + z) = xy + xz

0x = 0



Multiplication table of D



⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

z }| { z }| {z }| {
0 states 1 state 2 states 3 states

z }| {



⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

z }| { z }| {z }| {
0 states 1 state 2 states 3 states

z }| {

👆
👆



⚠ No unique factorisation 
into irreducible elements! ⚠

×=

×=



Theorem (Gadouleau)
For each , there exist a dynamical system with at least  
factorisations

n n



Theorem (Gadouleau)
For each , there exist a dynamical system with at least  
factorisations

n n

( )n



Theorem (Gadouleau)
For each , there exist a dynamical system with at least  
factorisations

n n

( )n = × ( )n−1



Theorem (Gadouleau)
For each , there exist a dynamical system with at least  
factorisations

n n

( )n = × ( )n−1

= × ( )n−2( )2



Theorem (Gadouleau)
For each , there exist a dynamical system with at least  
factorisations

n n

( )n = × ( )n−1

= × ( )n−2( )2

= ⋯ = ×( )n−1



The majority 
of dynamical systems 

is irreducible: 

lim
n→∞

reducible dyn sys over n points
total dyn sys over n points

= 0



Proof idea (Dorigatti)

• It is a simple combinatorial argument


• There are exponentially many dynamical systems (modulo 
isomorphism) over  points, asymptotically  with 

 and …


• …and “not enough” products in the upper-left corner 
of the multiplication table, so the majority must be 
irreducible

n cdn/ n
c ≈ 0.4 d ≈ 3



The semiring  contains the 
natural numbers  
as a subsemiring

D
ℕ



A monomorphism ℕ → D
φ(n) = + +⋯+

 timesn



A monomorphism ℕ → D
φ(n) = + +⋯+

1 ↦
2 ↦

0 ↦ Ø

3 ↦

 timesn



A monomorphism ℕ → D
φ(n) = + +⋯+

1 ↦
2 ↦

0 ↦ Ø

3 ↦

φ(0) = 0
φ(1) = 1
φ(x + y) = φ(x) + φ(y)
φ(xy) = φ(x) × φ(y)

 timesn



Some subsemirings of D

• The natural numbers 


• The bijections, aka dynamics only containing cycles 
(including fixed points), aka asymptotic behaviours 
of dynamical systems


• Dynamical systems without limit cycles of length

ℕ

> 1



Polynomial equations 
over D[X1, …, Xm]



Polynomial equations for the 
analysis of complex behaviours

X + Y2 = Z +



Polynomial equations for the 
analysis of complex behaviours

X + Y2 = Z +

X = Y = Z =

one solution:



Polynomial equations 
in semirings vs rings

• A ring has additive inverses (aka, it has subtraction)


• So each polynomial equation in a ring can be written 
as 


• This is not the case for our semiring, which has 
no subtraction


• So the general polynomial equation has the form 
 with two polynomials 

p( ⃗X ) = 0

p( ⃗X ) = q( ⃗X ) p, q ∈ D[ ⃗X ]



Solvability 
of polynomial equations 
over  is undecidableD



Polynomial equations 
over  are undecidableD

• By reduction from the unsolvability of diophantine 
equations over  (Hilbert’s 10th problem)


• Not an immediate consequence of having a subsemiring 
isomorphic to 


• For example, the solvability of polynomial equations over 
 is decidable, even trivial over , even if they contain 

ℕ

ℕ

ℝ ℂ ℕ



Natural equations with 
non-natural solutions

• Let , 


• Then  has the non-natural solution , 



• But it also has a natural solution, namely , 


• The natural solution is the size of the dynamical systems 
of the non-natural one


• This is not a coincidence!

p(X, Y) = 2X2 = X2 q(X, Y) = 3Y = Y

2X2 = 3Y X =
Y = 2

X = 3 Y = 6



The function “size”  
is a semiring homomorphism

| ⋅ | : D → ℕ

• 


•      


• Since  is the disjoint union, 


• Since  is the cartesian product, 

|∅ | = 0

| | = 1

+ |x + y | = |x | + |y |

× |xy | = |x | × |y |



Notation for polynomials  
of degree  with 

p ∈ D[ ⃗X ]
≤ d ⃗X = (X1, …, Xk)

p = ∑
⃗i∈{0,…,d}k

a ⃗i
⃗X ⃗i

where ⃗X ⃗i =
k

∏
j=1

Xij
j



Solvability of polynomial 
equations with natural 

coefficients 



Theorem

• If a polynomial equation over  has a solution 
in , then it also has a solution in 


• That is, in the largest semiring  we may find extra 
solutions to natural polynomial equations, but only if there 
is already a natural one

ℕ[X1, …, Xk]
Dk ℕk

D



Proof
• Let  with  and suppose  for some :





• Apply the size function , which is a homomorphism:





• where ; notice that  and  since they are 


• But that means  where , 
so  is a natural solution

p( ⃗X ) = q( ⃗X ) p, q ∈ ℕ[ ⃗X ] p( ⃗D) = q( ⃗D) ⃗D ∈ Dk

∑
i∈{0,…,d}k

a ⃗i
⃗D ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗D ⃗i

| ⋅ |

∑
i∈{0,…,d}k

a ⃗i
⃗D ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗D ⃗i ⇒ ∑

i∈{0,…,d}k

a ⃗i | ⃗D ⃗i | = ∑
i∈{0,…,d}k

b ⃗i | ⃗D ⃗i |

| ⃗D ⃗i | = ∏k
j=1 |Dj |

ij |a ⃗i | = a ⃗i |b ⃗i | = b ⃗i ℕ

p( | ⃗D | ) = q( | ⃗D | ) | ⃗D | = ( |D1 | , …, |Dk | )
| ⃗D |



Unsolvability of polynomial 
equations in D[ ⃗X ]

• A polynomial equation with natural coefficients has 
a solutions over the dynamical systems if and only if 
it has a natural solution


• Being able to solve polynomial equations over  
would then contradict the unsolvability of Hilbert’s 10th 
problem

D[ ⃗X ]



Equations with 
non-natural coefficients

• Notice that equations with non-natural coefficients might 
have only non-natural solutions


• For instance


 


• has the non-natural solution ,  
but no natural solutions

X2 = Y +

X = Y = 2



Polynomial equations with 
constant RHS are in NP



Nondeterministic algorithm for 
 with p( ⃗X ) = D D ∈ D

• Since  and  are monotonic wrt the sizes of the operands, 
each  in a solution to the equation has size 


• So it suffices to guess a dynamical system of size  
for each variable in polynomial time, then calculate LHS


• Finally we check whether LHS and RHS are isomorphic, 
exploiting the fact that graph isomorphism is in 


• Only one caveat: if at any time during the calculations the 
LHS becomes larger than , we halt and reject (otherwise 
the algorithm might take exponential time)

+ ×
Xi ≤ |D |

≤ |D |

NP

|D |



Solvability of a systems of 
linear equations with constant 

RHS is -completeNP



Systems of linear equations 
are -completeNP

• In  by the same algorithm as above, only with multiple equations


• -hard by reduction from the -complete problem 
One-in-three-3SAT: given a 3CNF formula , is there a satisfying 
assignment such that exactly one literal per clause is true?


• For each variable  in  we have an equation , forcing 
exactly one variable between  and  to be  and the other to be 


• For each clause, for instance , we have an equation, 
for instance , which forces the solution to be a 
satisfying assignment with one true literal per clause

NP

NP NP
φ

x φ x + x′ = 1
x x′ 0 1

(x ∨ ¬y ∨ z)
x + y′ + z = 1



Solvability of an equation of 
unbounded degree with 

constant RHS is -completeNP



Reducing  equations with 
RHS  to a single equation

n
= 1

• We multiply the LHS and RHS of the linear equations of the 
One-in-three-3SAT reduction:


	 	 	 	 


• The new equation has the same solutions of the old one: 
each  must be 


• Thus, solving equations of unbounded degree with constant RHS is 
-complete

p1( ⃗X ) = 1
⋮

pm( ⃗X ) = 1
⟺ p1( ⃗X ) × ⋯ × pm( ⃗X ) = 1

pi( ⃗X ) 1

NP



Is a single linear equation 
-complete?NP

• Over a ring that is also an integral domain (no nonzero 
elements ,  such that ), we can always have  
as RHS and reduce a system to a single equation:


	 	 	 	 


• We cannot do that in our semiring  due to the lack 
of subtraction, even if there are no nontrivial zero divisors

a b ab = 0 0

p1( ⃗X ) = 0
⋮

pm( ⃗X ) = 0
⟺ p1( ⃗X ) × ⋯ × pm( ⃗X ) = 0

D



Reducing a system of linear 
equations to a single one (Bridoux)
• Possible solution: given the system of linear equations





• find “linearly independent” elements  such that 
the equation





• …has the same solutions of the original system


• Conjecture: it is possible to find the “linearly independent” 

p1( ⃗X ) = q1( ⃗X )
⋮

pm( ⃗X ) = qm( ⃗X )

e1, …, em ∈ D

e1p1( ⃗X ) + ⋯+empm( ⃗X ) = e1q1( ⃗X ) + ⋯+emqm( ⃗X )

e1, …, em ∈ D



Open problems and 
work in progress



Open problems & WIP 1
• Find subclasses of polynomial equations that are solvable in 

polynomial time, or that are solvable but harder than 


• Find an -complete equation problem which does not depend 
on the -completeness of the same problem over the naturals


• (Bridoux) Transforming a system of equations into 
a single equation having the same solutions (nontrivial 
over semirings)


• Conjecture (Gadouleau): there is a polynomial-time algorithm for 
computing  when it exists

NP

NP
NP

n x



Open problems & WIP 2

• Is finding a factorisation -hard?


• (Gadouleau) Counting factorisations


• More detailed algebraic analysis of the semiring  
(find other subsemirings? ideals? generators? primes?)


• Conjecture (Guilhem Gamard @ LIS): maybe 
we can find an interpretation for category-theoretical 
exponentiation in 

NP

D

D
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¡Gracias por su atención! 
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