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Finite dynamical systems
and their category



Finite dynamical systems

A finite dynamical system is just a finite set X with a transition function f: X — X
e The category D of finite dynamical systems has
e as objects, the dynamical systems (X, /) themselves

e as arrows between (X, ) and (Y, g), the functions ¢: X — Y that make the
diagram commute:

f
X > X
P @
v v
Y > Y



The category D of
finite dynamical systems

* Has sums (coproducts) and initial objects
@p !
/ \2 . .
—> X+ X5 <— X5
 Has products and terminal objects

!
/\02 o



More concretely...



Sum in D = disjoint union
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Sum in D = disjoint union

Oo + Q - %S

identity = 0 = @, the empty dynamical system



Productin D =
cartesian product
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Productin D =
cartesian product
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The semiring of finite
dynamical systems



The semiring (D, + , X )

e The finite dynamical system modulo isomorphism are
an infinite set D which is a commutative semiring:

e (D, + ) is a commutative monoid with identity 0 = &

e (D, X)) is a commutative monoid with identity 1 = Q
e Distributivity: x(y + 2) = xy + x7
e Absorption: 0x = 0

 This semiring is not a ring, because there are no additive inverses



Multiplication table of D









. No unique factorisation
Into irreducible elements! /!

ole




Theorem (Gadouleau)

For each n, there exist a dynamical system with at least n
factorisations
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Theorem (Gadouleau)

For each n, there exist a dynamical system with at least n

factorisations
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Theorem (Gadouleau)

For each n, there exist a dynamical system with at least n
factorisations

(0)' = Qo x ()
= (@p)" x ()"
. = (Qp)”_l X (3



The majority
of dynamical systems
IS Irreducible:

. reducible dyn sys over n points
lim =0
n—oo total dyn sys over n points




Proof idea (Dorigatti)

e |tis a simple combinatorial argument

 There are exponentially many dynamical systems (modulo
isomorphism) over n points, asymptotically cd” / \/E with
c~04andd ~ 3...

e ...and “not enough” products in the upper-left corner

of the multiplication table, so the majority must be
irreducible



The semiring D contains the

natural numbers N
as a subsemiring



A monomorphism N — D
pn)= O + L ++ O

n times




A monomorphism N — D
pn)= O + L ++ O

n times

O~ 0

]l — &

2 > £2 &2
3 &2 62 &2



A monomorphism N — D
pn)= O + L ++ O

n times

O~ 0 »(0)=0
1 —» & p(l)=1
2 > 962 px+y) = @px)+ p(y)

3> &2 64 80 oxy) = px) X @(y)



Some subsemirings of D

e The natural numbers N

* The bijections, aka dynamics only containing cycles

(including fixed points), aka asymptotic behaviours
of dynamical systems

e Dynamical systems without limit cycles of length > 1



Polynomial equations
over D[X,, ..., X ]



Polynomial equations for the
analysis of complex behaviours

‘<;7X+ Y* = fJZ+./z?



Polynomial equations for the
analysis of complex behaviours

QX+ Y? = fJZ+(z?

one solution:

Y= ‘p r=F 2=



Polynomial equations
INn semirings Vs rings

A ring has additive inverses (aka, it has subtraction)

So each polynomial equation in a ring can be written
as p(X) =0

This is not the case for our semiring, which has
no subtraction

So the general polynomial equation has the form
p(X) = g(X) with two polynomials p,g € D[ X]



Solvability
of polynomial equations

over D is undecidable



Polynomial equations
over D are undecidable

e By reduction from the unsolvability of diophantine
equations over N (Hilbert’s 10th problem)

 Not an immediate consequence of having a subsemiring
isomorphic to N

* For example, the solvability of polynomial equations over
R is decidable, even trivial over C, even if they contain N



Natural equations with
non-natural solutions

Let p(X, Y) = 2X* = 9@ X% q(X,Y) =3Y = g{)Y

Then 2X? = 3Y has the non-natural solution X ='<:J,

y=2)

But it also has a natural solution, namely X =3, Y = 6

The natural solution is the size of the dynamical systems
of the non-natural one

This IS not a coincidence!



The function “size” | - |: D - N
IS a semiring homomorphism

Q=1

e Since + is the disjoint union, |x+ y| = | x| + | y]

e Since X is the cartesian product, |xy| = |x| X | ]



Notation for polynomials p & D[)?]
of degree < d with X = (X, ..., X})

p= Y X

iel0,....d}*

k
where X! = HXj’f
j=1



Solvability of polynomial
equations with natural
coefficients



Theorem

o If a polynomial equation over N[X;, ..., X, ] has a solution
in D*, then it also has a solution in N¥

e That is, in the largest semiring D we may find extra
solutions to natural polynomial equations, but only if there
IS already a natural one



Proof

Let p()?) = q()?) with p, g € N[)?] and suppose p(ﬁ) = q(ﬁ) for some D € DF:

Z a;ﬁ’? = Z b Dl

ief{0,....d}* i€{0,..
Apply the size function | - |, which is a homomorphism:

> aD' Z b~D’ = Y D= Y 5D

i€f{0,...,d}* i€{0,.. i€f{0,...,d}* i€f{0,...,d}*

where | D'| = H

i 1 D; |; notice that |az| = a-and | b7| = b-since they are N

But that meansp(|5|) = q(|5|)where |B| =(|Dy|,...,|D;|),
so | D | is a natural solution



Unsolvability of polynomial
equations in D| X |

e A polynomial equation with natural coefficients has
a solutions over the dynamical systems if and only if
it has a natural solution

e Being able to solve polynomial equations over D[)_(]

would then contradict the unsolvability of Hilbert’s 10th
problem



Equations with
non-natural coefficients

e Notice that equations with non-natural coefficients might
have only non-natural solutions

X2=v+% )
 has the non-natural solution X = ’(:7 , Y = ZO

but no natural solutions

e For instance



Polynomial equations with
constant RHS are in NP




Nondeterministic algorithm for
p(X)=DwithD €D

Since + and X are monotonic wrt the sizes of the operands,
each X: in a solution to the equation has size < | D |

So it suffices to guess a dynamical system of size < | D |
for each variable in polynomial time, then calculate LHS

Finally we check whether LHS and RHS are isomorphic,
exploiting the fact that graph isomorphism is in NP

Only one caveat: if at any time during the calculations the

LHS becomes larger than | D |, we halt and reject (otherwise
the algorithm might take exponential time)



Solvability of a systems of
linear equations with constant

RHS is NP-complete



Systems of linear equations
are NP-complete

In NP by the same algorithm as above, only with multiple equations

NP-hard by reduction from the NP-complete problem

One-in-three-3SAT: given a 3CNF formula ¢, is there a satisfying
assignment such that exactly one literal per clause is true?

For each variable x in ¢p we have an equation x + x" = 1, forcing
exactly one variable between x and x’ to be 0 and the other to be 1

For each clause, for instance (x V =y V z), we have an equation,

for instance x + y' + z = 1, which forces the solution to be a
satisfying assignment with one true literal per clause



Solvability of an equation of
unbounded degree with

constant RHS is NP-complete



Reducing n equations with
RHS = 1 to a single equation

We multiply the LHS and RHS of the linear equations of the
One-in-three-3SAT reduction:

p(X) =1 3 3
: = P X)X - Xp (X)=1
pu(X) =1

The new equation has the same solutions of the old one:
each p;( X ) must be 1

Thus, solving equations of unbounded degree with constant RHS is
NP-complete



Is a single linear equation
NP-complete?

e QOver aring that is also an integral domain (no nonzero

elements a, b such that ab = 0), we can always have O
as RHS and reduce a system to a single equation:

pi(X) =0 3 3
: — pi(X) X - Xp,(X)=0
p(X) =0

e \We cannot do that in our semiring D due to the lack
of subtraction, even if there are no nontrivial zero divisors



Reducing a system of linear
equations to a single one (Bridoux)

 Possible solution: given the system of linear equations
pi1(X) = q;(X)

p(X) = q,(X)

o find “linearly independent” elements ¢, ..., ¢, € D such that
the equation

elpl(X) + "'+€mpm(X) — €1q1(X) + "'+emqm(X)
e ...has the same solutions of the original system

« Conijecture: it is possible to find the “linearly independent” ¢, ...,e,, € D



Open problems and
work In progress




Open problems & WIP 1

 Find subclasses of polynomial equations that are solvable in
polynomial time, or that are solvable but harder than NP

e Find an NP-complete equation problem which does not depend
on the NP-completeness of the same problem over the naturals

e (Bridoux) Transforming a system of equations into
a single equation having the same solutions (nontrivial
over semirings)

e Conjecture (Gadouleau): there is a polynomial-time algorithm for
computing \7; when it exists



Open problems & WIP 2

e |s finding a factorisation NP-hard?

 (Gadouleau) Counting factorisations

e More detailed algebraic analysis of the semiring D
(find other subsemirings? ideals? generators? primes?)

 Conjecture (Guilhem Gamard @ LIS): maybe
we can find an interpretation for category-theoretical

exponentiation in D
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