Composing behaviours in the semiring of dynamical systems

Antonio E. Porreca
Aix-Marseille Université \&
Laboratoire d'Informatique et Systèmes ill aeporreca.org

Composing behaviours in the semiring
 of dynamical systems

Presented by
Florian Bridoux
Aix-vvarselle Université \&
Laboratoire d'Informatique et Systèmes ill
aeporreca.org

A collaboration between

- Florian Bridoux (Aix-Marseille Université \& LIS II)
- Alberto Dennunzio (Università degli Studi di Milano-Bicocca ■i)
- Valentina Dorigatti (Università degli Studi dell'Insubria II)
- Enrico Formenti (Université Nice Sophia Antipolis \& I3S II)
- Maximilien Gadouleau (Durham University 比)
- Luca Manzoni (Università degli Studi di Trieste ■i)
- Antonio E. Porreca (Aix-Marseille Université \& LIS II)

Finite dynamical systems

 and their category
Finite dynamical systems

- A finite dynamical system is just a finite set X with a transition function $f: X \rightarrow X$
- The category D of finite dynamical systems has
- as objects, the dynamical systems (X, f) themselves
- as arrows between (X, f) and (Y, g), the functions $\varphi: X \rightarrow Y$ that make the diagram commute:

The category \mathbf{D} of finite dynamical systems

- Has sums (coproducts) and initial objects

- Has products and terminal objects

More concretely...

Sum in $\mathbf{D}=$ disjoint union

Sum in $\mathbf{D}=$ disjoint union

Sum in $\mathbf{D}=$ disjoint union

identity $=\mathbf{0}=\varnothing$, the empty dynamical system

Product in $\mathbf{D}=$ cartesian product

Product in $\mathbf{D}=$ cartesian product

=

Product in $\mathbf{D}=$ cartesian product

Product in $\mathbf{D}=$ cartesian product

Product in $\mathbf{D}=$ cartesian product

Product in $\mathbf{D}=$ cartesian product

identity $=\mathbf{1}=\Omega$

The semiring of finite dynamical systems

The semiring $(\mathbf{D},+, \times)$

- The finite dynamical system modulo isomorphism are an infinite set \mathbf{D} which is a commutative semiring:
- $(\mathbf{D},+)$ is a commutative monoid with identity $\mathbf{0}=\varnothing$
- (\mathbf{D}, \times) is a commutative monoid with identity $\mathbf{1}=\Omega$
- Distributivity: $x(y+z)=x y+x z$
- Absorption: $\mathbf{0} x=\mathbf{0}$
- This semiring is not a ring, because there are no additive inverses

Multiplication table of \mathbf{D}

! No unique factorisation into irreducible elements! !

Theorem (Gadouleau)

For each n, there exist a dynamical system with at least n factorisations

Theorem (Gadouleau)

For each n, there exist a dynamical system with at least n factorisations

Theorem (Gadouleau)

For each n, there exist a dynamical system with at least n factorisations

Theorem (Gadouleau)

For each n, there exist a dynamical system with at least n factorisations

Theorem (Gadouleau)

For each n, there exist a dynamical system with at least n factorisations

$$
\begin{aligned}
(\zeta))^{n} & \left.=\Omega_{\Omega} \times(\delta)\right)^{n-1} \\
& \left.=\left(\Omega_{\Omega}\right)^{2} \times(\delta)\right)^{n-2} \\
=\cdots & \left.=\left(\Omega_{\Omega}\right)^{n-1} \times \delta\right)
\end{aligned}
$$

The majority of dynamical systems is irreducible:

reducible dyn sys over n points
lim
$n \rightarrow \infty \quad$ total dyn sys over n points

Proof idea (Dorigatti)

- It is a simple combinatorial argument
- There are exponentially many dynamical systems (modulo isomorphism) over n points, asymptotically $c d^{n} / \sqrt{n}$ with $c \approx 0.4$ and $d \approx 3 \ldots$
- ...and "not enough" products in the upper-left corner of the multiplication table, so the majority must be irreducible

The semiring \mathbf{D} contains the natural numbers \mathbb{N} as a subsemiring

A monomorphism $\mathbb{N} \rightarrow \mathbf{D}$

$$
\varphi(n)=\underbrace{\varrho+\Omega+\cdots+\Omega}
$$

n times

A monomorphism $\mathbb{N} \rightarrow \mathbf{D}$

$$
\varphi(n)=\underbrace{\varrho+\Omega+\cdots+\Omega}_{n \text { times }}
$$

$0 \mapsto \emptyset$
$1 \mapsto \Omega$
$2 \mapsto \Omega \Omega$
$3 \mapsto \Omega \Omega \Omega$

A monomorphism $\mathbb{N} \rightarrow \mathbf{D}$

$\varphi(n)=\underbrace{\Omega+\Omega+\cdots+\Omega}$
 n times

$0 \mapsto \varnothing$
$\varphi(0)=\mathbf{0}$
$1 \mapsto \Omega$
$\varphi(1)=1$
$2 \mapsto \Omega \Omega$
$\varphi(x+y)=\varphi(x)+\varphi(y)$
$3 \mapsto \Omega \Omega \Omega$
$\varphi(x y)=\varphi(x) \times \varphi(y)$

Some subsemirings of \mathbf{D}

- The natural numbers \mathbb{N}
- The bijections, aka dynamics only containing cycles (including fixed points), aka asymptotic behaviours of dynamical systems
- Dynamical systems without limit cycles of length >1

Polynomial equations over $\mathbf{D}\left[X_{1}, \ldots, X_{m}\right]$

Polynomial equations for the analysis of complex behaviours

$$
\overbrace{6}^{9} X+Y^{2}=6
$$

Polynomial equations for the analysis of complex behaviours

one solution:

$$
X=6_{6}^{6} \quad Y=\varrho_{6}^{0} \quad Z=9
$$

Polynomial equations in semirings vs rings

- A ring has additive inverses (aka, it has subtraction)
- So each polynomial equation in a ring can be written as $p(\vec{X})=0$
- This is not the case for our semiring, which has no subtraction
- So the general polynomial equation has the form $p(\vec{X})=q(\vec{X})$ with two polynomials $p, q \in \mathbf{D}[\vec{X}]$

Solvability
 of polynomial equations over \mathbf{D} is undecidable

Polynomial equations over \mathbf{D} are undecidable

- By reduction from the unsolvability of diophantine equations over \mathbb{N} (Hilbert's 10th problem)
- Not an immediate consequence of having a subsemiring isomorphic to \mathbb{N}
- For example, the solvability of polynomial equations over \mathbb{R} is decidable, even trivial over \mathbb{C}, even if they contain \mathbb{N}

Natural equations with non-natural solutions

- Let $p(X, Y)=2 X^{2}=\Omega \Omega X^{2}, q(X, Y)=3 Y=\Omega \Omega Y$
- Then $2 X^{2}=3 Y$ has the non-natural solution $X=$,
$Y=2$ $Y=2$
- But it also has a natural solution, namely $X=3, Y=6$
- The natural solution is the size of the dynamical systems of the non-natural one
- This is not a coincidence!

The function "size" $|\cdot|: \mathbf{D} \rightarrow \mathbb{N}$ is a semiring homomorphism

- $|\varnothing|=0$
- $|\oslash|=1$
- Since + is the disjoint union, $|x+y|=|x|+|y|$
- Since \times is the cartesian product, $|x y|=|x| \times|y|$

Notation for polynomials $p \in \mathbf{D}[\vec{X}]$ of degree $\leq d$ with $\vec{X}=\left(X_{1}, \ldots, X_{k}\right)$

$$
p=\sum_{\vec{i} \in\{0, \ldots, d\}^{k}} a_{\vec{i}} \vec{X}^{\vec{i}}
$$

where

$$
\vec{X}^{\vec{i}}=\prod_{j=1}^{k} X_{j}^{i_{j}}
$$

Solvability of polynomial equations with natural coefficients

Theorem

- If a polynomial equation over $\mathbb{N}\left[X_{1}, \ldots, X_{k}\right]$ has a solution in \mathbf{D}^{k}, then it also has a solution in \mathbb{N}^{k}
- That is, in the largest semiring \mathbf{D} we may find extra solutions to natural polynomial equations, but only if there is already a natural one

Proof

- Let $p(\vec{X})=q(\vec{X})$ with $p, q \in \mathbb{N}[\vec{X}]$ and suppose $p(\vec{D})=q(\vec{D})$ for some $\vec{D} \in \mathbf{D}^{k}$:

$$
\sum_{i \in\{0, \ldots, d\}^{k}} a_{\vec{i}} \vec{D}^{\vec{i}}=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \vec{D}^{\vec{i}}
$$

- Apply the size function $|\cdot|$, which is a homomorphism:

$$
\left|\sum_{i \in\{0, \ldots, d\}^{k}} a_{\vec{i}} \vec{D}^{\vec{i}}\right|=\left|\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \vec{D}^{\vec{i}}\right| \Rightarrow \sum_{i \in\{0, \ldots, d\}^{k}} a_{\vec{i}}\left|\vec{D}^{\vec{i}}\right|=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}}\left|\vec{D}^{\vec{i}}\right|
$$

- where $\left|\vec{D}^{\vec{i}}\right|=\prod_{j=1}^{k}\left|D_{j}\right|^{l^{i}}$; notice that $\left|a_{\vec{i}}\right|=a_{\vec{i}}$ and $\left|b_{\vec{i}}\right|=b_{\vec{i}}$ since they are \mathbb{N}
- But that means $p(|\vec{D}|)=q(|\vec{D}|)$ where $|\vec{D}|=\left(\left|D_{1}\right|, \ldots,\left|D_{k}\right|\right)$, so $|\vec{D}|$ is a natural solution

Unsolvability of polynomial equations in $\mathbf{D}[\vec{X}]$

- A polynomial equation with natural coefficients has a solutions over the dynamical systems if and only if it has a natural solution
- Being able to solve polynomial equations over $\mathbf{D}[\vec{X}]$ would then contradict the unsolvability of Hilbert's 10th problem

Equations with non-natural coefficients

- Notice that equations with non-natural coefficients might have only non-natural solutions
- For instance

$$
X^{2}=Y+
$$

- has the non-natural solution $X=$ but no natural solutions

Polynomial equations with constant RHS are in NP

Nondeterministic algorithm for
 $p(\vec{X})=D$ with $D \in \mathbf{D}$

- Since + and \times are monotonic wrt the sizes of the operands, each X_{i} in a solution to the equation has size $\leq|D|$
- So it suffices to guess a dynamical system of size $\leq|D|$ for each variable in polynomial time, then calculate LHS
- Finally we check whether LHS and RHS are isomorphic, exploiting the fact that graph isomorphism is in NP
- Only one caveat: if at any time during the calculations the LHS becomes larger than $|D|$, we halt and reject (otherwise the algorithm might take exponential time)

Solvability of a systems of

 linear equations with constant RHS is NP-complete
Systems of linear equations are NP-complete

- In NP by the same algorithm as above, only with multiple equations
- NP-hard by reduction from the NP-complete problem One-in-three-3SAT: given a 3CNF formula φ, is there a satisfying assignment such that exactly one literal per clause is true?
- For each variable x in φ we have an equation $x+x^{\prime}=1$, forcing exactly one variable between x and x^{\prime} to be 0 and the other to be 1
- For each clause, for instance ($x \vee \neg y \vee z$), we have an equation, for instance $x+y^{\prime}+z=1$, which forces the solution to be a satisfying assignment with one true literal per clause

Solvability of an equation of unbounded degree with constant RHS is NP-complete

Reducing n equations with
 RHS $=1$ to a single equation

- We multiply the LHS and RHS of the linear equations of the One-in-three-3SAT reduction:

$$
\left\{\begin{array}{rl}
p_{1}(\vec{X}) & =1 \\
\vdots \\
p_{m}(\vec{X}) & =1
\end{array} \quad \Longleftrightarrow \quad p_{1}(\vec{X}) \times \cdots \times p_{m}(\vec{X})=1\right.
$$

- The new equation has the same solutions of the old one: each $p_{i}(\vec{X})$ must be 1
- Thus, solving equations of unbounded degree with constant RHS is NP-complete

Is a single linear equation NP-complete?

- Over a ring that is also an integral domain (no nonzero elements a, b such that $a b=0$), we can always have 0 as RHS and reduce a system to a single equation:

$$
\left\{\begin{array}{rl}
p_{1}(\vec{X}) & =0 \\
\vdots \\
p_{m}(\vec{X}) & =0
\end{array} \quad \Longleftrightarrow \quad p_{1}(\vec{X}) \times \cdots \times p_{m}(\vec{X})=0\right.
$$

- We cannot do that in our semiring \mathbf{D} due to the lack of subtraction, even if there are no nontrivial zero divisors

Reducing a system of linear equations to a single one (Bridoux)

- Possible solution: given the system of linear equations

$$
\left\{\begin{array}{c}
p_{1}(\vec{X})=q_{1}(\vec{X}) \\
\vdots \\
p_{m}(\vec{X})=q_{m}(\vec{X})
\end{array}\right.
$$

- find "linearly independent" elements $e_{1}, \ldots, e_{m} \in \mathbf{D}$ such that the equation

$$
e_{1} p_{1}(\vec{X})+\cdots+e_{m} p_{m}(\vec{X})=e_{1} q_{1}(\vec{X})+\cdots+e_{m} q_{m}(\vec{X})
$$

- ...has the same solutions of the original system
- Conjecture: it is possible to find the "linearly independent" $e_{1}, \ldots, e_{m} \in \mathbf{D}$

Open problems and work in progress

Open problems \& WIP 1

- Find subclasses of polynomial equations that are solvable in polynomial time, or that are solvable but harder than NP
- Find an NP-complete equation problem which does not depend on the NP-completeness of the same problem over the naturals
- (Bridoux) Transforming a system of equations into a single equation having the same solutions (nontrivial over semirings)
- Conjecture (Gadouleau): there is a polynomial-time algorithm for computing $\sqrt[n]{x}$ when it exists

Open problems \& WIP 2

- Is finding a factorisation NP-hard?
- (Gadouleau) Counting factorisations
- More detailed algebraic analysis of the semiring D (find other subsemirings? ideals? generators? primes?)
- Conjecture (Guilhem Gamard @ LIS): maybe we can find an interpretation for category-theoretical exponentiation in \mathbf{D}

Bibliography

- Valentina Dorigatti, Algorithms and Complexity of the Algebraic Analysis of Finite Discrete Dynamical Systems, M.Sc. thesis, Università degli Studi di Milano-Bicocca, 2018
- Dennunzio, Dorigatti, Formenti, Manzoni, Porreca, Polynomial equations over finite, discrete-time dynamical systems, 13th International Conference on Cellular Automata for Research and Industry, ACRI 2018
- Dennunzio, Formenti, Margara, Montmirail, Riva, Solving equations on discrete dynamical systems, 16th International Conference on Computational Intelligence methods for Bioinformatics and Biostatistics, CIBB 2019

¡Gracias por su atención! ¡Thanks for your attention!

