Counting complexity
and oracles %

In natural computing

Antonio E. Porreca
Laboratoire d’Informatique et Systemes
Equipe CANA
https://aeporreca.org


https://aeporreca.org

Outline

Complexity classes for parallel computing models
Cellular automata in various geometric spaces
Membrane systems, counting and oracles
Expanding cellular automata

Conclusions and future work



The first and second
machine classes



The first machine class and P

e |ncludes the deterministic Turing machine and all models
that simulate and are simulated by it efficiently:

e Random access machines (RAM) with
constant-time addition and subtraction

e (Cellular automata with a finite initial configuration



The second machine class
and PSPACE

e |ncludes models of computation that solve in polynomial
time what a Turing machine solves in polynomial space:

e Alternating Turing machines

e Random access machines including
constant time multiplication and division

e Parallel processes generated by fork(2)
running on an unbounded number of processors

e (Cellular automata over hyperbolic grids



Nondeterministic
Turing machines: NP
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Alternating
Turing machines: PSPACE
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Flattening v-circuits




Flattening v-circuits




Flattening Av-circuits?
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Computation space
vs computation efficiency
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Cellular automata
over a Euclidean grid




Cellular automata
over a Euclidean grid
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Cellular automata
over a hyperbolic grid
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heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
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Cellular automata
over a hyperbolic grid
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Cellular automata
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Cellular automata
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Cellular automata
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Cellular automata
over a hyperbolic grid
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Rule of thumb =

Sequential machines are first class

(Constant or polynomial) bounded parallel machines
are also first class

Unbounded (or exponential bounded) parallel machines
are second class

Apparently, this holds even for unconventional
computing models &



A “more unconventional”
model of computation:
membrane systems



Membrane systems
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Evolution rules
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Evolution rules

[ab — cd] *

“monodirectional”

(2] ~ [6] [c] @ P (o))



Simulating Turing
machines with
membrane systems



Encoding the configuration

g




Encodi

|

ng the configuratio
n

g

d1 s
6

b2 b3 d4 5




Simulating transitions
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Simulating transitions
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Simulating nondeterminism
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Simulating nondeterminism




Simulating NDTM = NP
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Simulating NDTM = NP




Simulating NDTM = NP




Counting complexity



Counting
Turing machines: #P
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Counting with
membrane systems



Simulating CTM = #P
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Oracles %



TM with oracle
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TM with oracle




The complexity class P#Pl1]

The class of problems solved by
polynomial-time Turing machines with a single query
to an oracle for a #P-complete problem

PSPACE

P#P[1]

o
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The class of problems solved by
polynomial-time Turing machines with a single query
to an oracle for a #P-complete problem

PSPACE

P#P[1]
Toda’s theorem

PH



Solving P#Pl1] with
(monodirectional, shallow)
membrane systems



Pre-query computation




Entering the query state
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Entering the query state




Simulating the auxiliary TM
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Simulating the auxiliary TM




Collecting the output




Converting unary to binary




Converting unary to binary
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Answer on the tape




Answer on the tape




Resuming the simulation
of the main TM




Final answer




Simulating
(monodirectional, shallow)
membrane systems is in P#Pl1]



Counting the number of objects a sent
out by a membrane at time t is in #P

e fori:=0totdo

e deterministically choose a maximal multisite of rules to
apply inside the simulated membrane

e apply all the rules except membrane division in
deterministic polynomial time (*“Milano Theorem?)

e if applying membrane division, nondeterministically choose
whether to simulate the left or the right resulting membrane

e |f an object a was sent out in the last step then accept,
otherwise reject



Lemma: P#Pll] = parallel P#P

Trivially P#Pl1] C parallel P#P

* A polynomial number of queries f(x1), ..., f(Xm)
can be replaced by a single query to

g(x1$xz$...$xm) — Z Bi X f(xi) = f(Xi) _ [g(x1$x2.$-.-$xm)J
i=1

B|—1

* The function g is also in #P because this class
IS closed under sums and products



Simulating (shallow, monodirectional)
membrane systems in P#P[1]

* for each membrane in the initial configuration, for each object
type a and for each time step t, ask the oracle how many objects
of type a are sent out by the membrane at time t
(note: polynomial number of parallel queries!)

* while the system has not produced the answer object do

* simulate one step of the external environment
deterministically (Milano Theorem)

e add the objects sent out from the membranes (according to
the queries asked) to the environment

* accept or reject according to the answer of the system simulated



Computational complexity
of membrane systems

No membranes (only environment) = P
Shallow, monodirectional — P#Plll = parallel P#P
Shallow, bidirectional = P#P

Constant depth k, bidirectional = PCkP
where CoP = P, C1P = PP, C,P = PPPP, C\P = PPCk-1P
is the counting hierarchy [work in progress]

Unbounded depth, bidirectional = PSPACE



Expanding cellular
automata (XCA)



Expanding CA

alblblalala




Expanding CA

alblblalala

alalalalblb




Expanding CA

alblblalala




Expanding CA




Expanding CA




Expanding CA

alblblalala




Expanding CA

ajbfblaja]a

/
a|bfb]a lalal




alblblalala

Expanding CA




Expanding CA
alblblalala




Complexity results on XCA

e The class of problems solved in polynomial time

by XCA is exactly the class of problems truth-table
reducible to NP

e If shrinking (deleting cells) is also allowed,
then the class becomes PSPACE



Conclusions
and future work



Summary of results

* A lot of parallels computing models characterise either P
or PSPACE when working in polynomial time

e Some variants of membrane systems characterise

more “exotic” complexity classes with oracles,
like P#Pl1], P#P PNP

e Expanding CA characterise the class of problems

truth-table reducible to NP, which is somehow similar
to oracle complexity classes



Conjectures and future work

e Find out why these models happen to characterise
these exotic complexity classes

 Find out how the topology of the parallel computing units
influences the efficiency:

e Trees or stars for membrane systems
e Linear or Euclidean grid for CA

e Linear but expanding for XCA
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Thanks for your attention!
Merci de votre attention !



