Counting complexity
and oracles %

In natural computing

Antonio E. Porreca
Laboratoire d’Informatique et Systemes
Equipe CANA
https://aeporreca.org

https://aeporreca.org

Outline

Complexity classes for parallel computing models
Cellular automata in various geometric spaces
Membrane systems, counting and oracles
Expanding cellular automata

Conclusions and future work

The first and second
machine classes

The first machine class and P

e |ncludes the deterministic Turing machine and all models
that simulate and are simulated by it efficiently:

e Random access machines (RAM) with
constant-time addition and subtraction

e (Cellular automata with a finite initial configuration

The second machine class
and PSPACE

e |ncludes models of computation that solve in polynomial
time what a Turing machine solves in polynomial space:

e Alternating Turing machines

e Random access machines including
constant time multiplication and division

e Parallel processes generated by fork(2)
running on an unbounded number of processors

e (Cellular automata over hyperbolic grids

Nondeterministic
Turing machines: NP

N

Nondeterministic
Turing machines: NP

Nondeterministic
Turing machines: NP

N
/

SN L

{J

Nondeterministic
Turing machines: NP

*“e
Q.

/o

Nondeterministic
Turing machines: NP

1 o
0.

/o

Alternating
Turing machines: PSPACE

9

N
] 7N
O

(

1

Alternating
Turing machines: PSPACE

Alternating
Turing machines: PSPACE
0,

Flattening v-circuits

Flattening v-circuits

Flattening Av-circuits?

Flattening Av-circuits?

Computation space
vs computation efficiency

N N N T N T T T
Cellular automata

Cellular automata

Cellular automata

Cellular automata

Cellular automata

Cellular automata
over a Euclidean grid

Cellular automata
over a Euclidean grid

N N N T N T T T
Cellular automata

Cellular automata
over a hyperbolic grid

e

el o'.’. '°"o'a

s 0
Vet

T —

T

Pavage du plan hyperbolique par des
heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

a1
Y

s 0
Vet

Cellular automata
over a hyperbolic grid

..........

o
..........

o0 e
RO e sy,
."c'..\
R

..”".’3.

Pavage du plan hyperbolique par des
heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Cellular automata
over a hyperbolic grid

S P e

e a9t g greg ., N
5 G Q MRS
@

Pavage du plan hyperbolique par des
heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Cellular automata
over a hyperbolic grid

s o......'.:‘...' . “o '-":".... >

R

Pavage du plan hyperbolique par des
heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Cellular automata

4 Pavage du plan hyperbolique par des

¥ heptagones, dans le modéle du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Cellular automata

o]
3,3 Pavage du plan hyperbolique par des
';i’ heptagones, dans le modele du disque
: de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Cellular automata
over a hyperbolic grid

."......‘...'..i.“-..".."':'3';*.,»».,.
: .’....... < 3,

. .'-."..'.,..'.'..v.’
o‘.
Gj\ N

‘..-"-'3..
oS\

o]
3,3 Pavage du plan hyperbolique par des
';i’ heptagones, dans le modele du disque
A de Poincare. By Theon, used under CC
J BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Rule of thumb =

Sequential machines are first class

(Constant or polynomial) bounded parallel machines
are also first class

Unbounded (or exponential bounded) parallel machines
are second class

Apparently, this holds even for unconventional
computing models &

A “more unconventional”
model of computation:
membrane systems

Membrane systems

O

Membrane systems

Evolution rules
[ab — cd]
[a] = [1Db
a[]- [b]

[a] = [b] [c]

Evolution rules
[ab = cd] " 4
[a] = [1Db
a[]- [b]

[a] = [b] [c]

Evolution rules

[ab — cd] *
SR ONE 2OL

al]—[b]

[a] = [b] [c]

Evolution rules

[ab — cd] *
SR ONE 2OL

all-1 a()P (o)

[a] = [b] [c]

Evolution rules

[ab — cd] *
SR ONE 2OL

all-1 a()P (o)
SEICICENOR 20O

Evolution rules

[ab — cd] *

“monodirectional”

(2] ~ [6] [c] @ P (o))

Simulating Turing
machines with
membrane systems

Encoding the configuration

g

Encodi

|

ng the configuratio
n

g

d1 s
6

b2 b3 d4 5

Simulating transitions

@ 6(q,b) = (na,+1)

(T
=

3

6
S

Simulating transitions

@ 6(q,b) = (na,+1) @

Simulating transitions

@ 6(q,b) = (na,+1) @

Simulating nondeterminism

s -{ 271

G
oy Bk
L w @
. 2

1 3

6
5

(3]
oG

1 Q0

INISM
rmin
g hondete
IN
Imulati
Sim

aa Ds
3
b2 a

S2
bs a4 Us
3
b2

1)
(ra-|;1)

Ds

o(q,b) =

e

Simulating nondeterminism

Simulating NDTM = NP

(i)

Simulating NDTM = NP

() ()

Simulating NDTM = NP

Simulating NDTM = NP

(i)
(i)

()
()

()
()

()
()

Simulating NDTM = NP

Simulating NDTM = NP

Counting complexity

Counting
Turing machines: #P

9

RN

; YO
SN Lo]

Counting
Turing machines: #P

*~e

s

1

Counting
Turing machines: #P

o

s

1

Flattening ®-circuits

Flattening ®-circuits

Counting with
membrane systems

Simulating CTM = #P

Simulating CTM = #P

Oracles %

TM with oracle

.
gRRnys

TM with oracle

"I laTerars

TM with oracle

gtinn

TM with oracle

gtinn

TM with oracle

The complexity class P#Pl1]

The class of problems solved by
polynomial-time Turing machines with a single query
to an oracle for a #P-complete problem

PSPACE

P#P[1]

o

The complexity class P#Pl1]

The class of problems solved by
polynomial-time Turing machines with a single query
to an oracle for a #P-complete problem

PSPACE

P#P[1]
Toda’s theorem

PH

Solving P#Pl1] with
(monodirectional, shallow)
membrane systems

Pre-query computation

Entering the query state

Entering the query state

Entering the query state

Simulating the auxiliary TM

Simulating the auxiliary TM

Simulating the auxiliary TM

Simulating the auxiliary TM

Collecting the output

Converting unary to binary

Converting unary to binary

Converting unary to binary

Converting unary to binary

Converting unary to binary

Converting unary to binary

Answer on the tape

Answer on the tape

Resuming the simulation
of the main TM

Final answer

Simulating
(monodirectional, shallow)
membrane systems is in P#Pl1]

Counting the number of objects a sent
out by a membrane at time t is in #P

e fori:=0totdo

e deterministically choose a maximal multisite of rules to
apply inside the simulated membrane

e apply all the rules except membrane division in
deterministic polynomial time (*“Milano Theorem?)

e if applying membrane division, nondeterministically choose
whether to simulate the left or the right resulting membrane

e |f an object a was sent out in the last step then accept,
otherwise reject

Lemma: P#Pll] = parallel P#P

Trivially P#Pl1] C parallel P#P

* A polynomial number of queries f(x1), ..., f(Xm)
can be replaced by a single query to

g(x1xz...$xm) — Z Bi X f(xi) = f(Xi) _ [g(x1$x2.$-.-$xm)J
i=1

B|—1

* The function g is also in #P because this class
IS closed under sums and products

Simulating (shallow, monodirectional)
membrane systems in P#P[1]

* for each membrane in the initial configuration, for each object
type a and for each time step t, ask the oracle how many objects
of type a are sent out by the membrane at time t
(note: polynomial number of parallel queries!)

* while the system has not produced the answer object do

* simulate one step of the external environment
deterministically (Milano Theorem)

e add the objects sent out from the membranes (according to
the queries asked) to the environment

* accept or reject according to the answer of the system simulated

Computational complexity
of membrane systems

No membranes (only environment) = P
Shallow, monodirectional — P#Plll = parallel P#P
Shallow, bidirectional = P#P

Constant depth k, bidirectional = PCkP
where CoP = P, C1P = PP, C,P = PPPP, C\P = PPCk-1P
is the counting hierarchy [work in progress]

Unbounded depth, bidirectional = PSPACE

Expanding cellular
automata (XCA)

Expanding CA

alblblalala

Expanding CA

alblblalala

alalalalblb

Expanding CA

alblblalala

Expanding CA

Expanding CA

Expanding CA

alblblalala

Expanding CA

ajbfblaja]a

/
a|bfb]a lalal

alblblalala

Expanding CA

Expanding CA
alblblalala

Complexity results on XCA

e The class of problems solved in polynomial time

by XCA is exactly the class of problems truth-table
reducible to NP

e If shrinking (deleting cells) is also allowed,
then the class becomes PSPACE

Conclusions
and future work

Summary of results

* A lot of parallels computing models characterise either P
or PSPACE when working in polynomial time

e Some variants of membrane systems characterise

more “exotic” complexity classes with oracles,
like P#Pl1], P#P PNP

e Expanding CA characterise the class of problems

truth-table reducible to NP, which is somehow similar
to oracle complexity classes

Conjectures and future work

e Find out why these models happen to characterise
these exotic complexity classes

 Find out how the topology of the parallel computing units
influences the efficiency:

e Trees or stars for membrane systems
e Linear or Euclidean grid for CA

e Linear but expanding for XCA

References

Sosik, P. and Rodriguez-Paton, A., 2007. Membrane computing and
complexity theory: A characterization of PSPACE. Journal of Computer
and System Sciences, 73(1), pp. 137-152

Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E. and Zandron, C.,
2017. Characterising the complexity of tissue P systems with fission
rules. Journal of Computer and System Sciences, 90, pp. 115-128

Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E. and Zandron, C.,
2016. Monodirectional P systems. Natural Computing, 15(4), pp. 551-
564

Modanese, A., 2019. Complexity-theoretic aspects of expanding
cellular automata. arXiv preprint arXiv:1902.05487 (accepted at
AUTOMATA 2019)

Thanks for your attention!
Merci de votre attention !

