Do complexity classes for P systems have complete problems?

Antonio E. Porreca porreca@disco.unimib.it

Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano-Bicocca, Italy

BWMC 8 (Sevilla, February 1–5, 2010)

Classes with known complete problems

- In several cases, the answer is known and affirmative...
- ... simply because several complexity classes for P systems are simply P or PSPACE
- ► P and PSPACE have well-known complete problems
- Complexity classes for P systems inherit them

The importance of complete problems

- ► Suppose *L* complete for **C** and **C** closed under reductions
- Then solving L implies solving every problem in C
 - Useful to prove upper bounds on C
- Most important classes for TMs have complete problems
- But we conjecture that some do not (for instance PH)

Bounded acceptance problem for Turing machines

• Let *L* be the set of triples $(M, x, 1^t)$ such that

- M is (the description of a) DTM
- ► x is a string
- 1^t is the unary notation for $t \in \mathbf{N}$
- M accepts x in t steps

Theorem

L is P-complete w.r.t. logspace reductions

Let's change the notion of acceptance for P systems Just for the duration of this talk!

- A P system accepts iff it sends out yes
- A P system rejects iff it sends out *no*
- Only one between yes, no is sent out
- All computations agree (confluence)
- But the P system is not required to halt after having produced the result

Bounded acceptance for P systems is complete

 Let AM(-ne) denote P systems with elementary active membranes

- Three polarizations
- All rules except nonelementary division
- Let BAP be the set of pairs $(\Pi, 1^t)$ where
 - ▶ $\Pi \in \mathcal{AM}(-ne)$
 - 1^t is the unary notation for $t \in \mathbf{N}$
 - The "first computation" of Π accepts in t steps

Theorem

BAP is $PMC^*_{AM(-ne)}$ -complete w.r.t. polytime reductions, assuming the alternative definition of acceptance

Lemma 1. BAP is $PMC^{\star}_{AM(-ne)}$ -hard

Proof.

• Let $L \in \mathbf{PMC}^{\star}_{\mathcal{AM}(-ne)}$

► Let *M* be a DTM constructing **Π** in polytime

- ► $\Pi = {\Pi_x \mid x \in \Sigma^*} \subseteq \mathcal{AM}(-ne)$ is a family deciding *L* in polytime for some polynomial *p*
- Let $R(x) = (M(x), 1^{p(|x|)}) = (\Pi_x, 1^{p(|x|)})$
- *R* is polytime computable
- The following assertions are equivalent
 - ► *x* ∈ *L*
 - The first computation of Π_x accepts in p(|x|) steps
 - $R(x) \in BAP$
- Thus *R* is a polytime reduction $L \leq BAP$

Lemma 2. BAP $\in \mathbf{PMC}^{\star}_{\mathcal{AM}(-ne)}$

Proof.

- Let *M* be the DTM defined by $M(\Pi, 1^t) = \Pi'$
- Π' is Π modified as follows
 - If Π accepts in *t* steps, then Π' accepts
 - ► Otherwise Π′ rejects
- Idea of the construction (details omitted for brevity)
 - Enclose Π with a few extra membranes, which stop any output from Π after t steps
 - In that case, object no is sent out
 - Only O(1) extra time required
- *M* runs in polytime \Rightarrow semi-uniform construction

Generalisation to other variants of P systems

- The construction of Lemma 2 uses only evolution and send-out communication rules
 - Thus we can find complete problems for several other classes
- We can prove Lemma 2 using dissolution rules instead of polarizations
 - A connection to the P conjecture?
- The argument also works in the uniform case

Fundamental open question

- Recall that we changed the notion of acceptance
- Lemma 1 (BAP is PMC^{*}_{AM(-ne)}-hard) does not depend on that
- ► The proof of Lemma 2 (BAP ∈ PMC^{*}_{AM(-ne)}) unfortunately does
- Can we prove it in the usual setting?
- ▶ Recall that $NP \cup coNP \subseteq PMC^{\star}_{AM(-ne)} \subseteq PSPACE$
 - Also $NP \cup coNP \subseteq PH \subseteq PSPACE$
 - If PMC^{*}_{AM(-ne)} has complete problems then PMC^{*}_{AM(-ne)} ≠ PH (probably)

True or false?

Problem

For each alternative recogniser P system Π , giving output in polynomial time, we can construct a regular recogniser P system Π' such that

- The construction only takes polynomial time
- They give the same result
- Π' always halts
- The slowdown is at most polynomial

The last point seems to be the difficult one!

Any questions?

¡Gracias!

Thank you!