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Main idea



“If you liked it then you shoulda 
put a semiring on it”
Beyoncé Knowles, “Single Ladies (Put a Semiring on It)”

In: Beyoncé Knowles, Mathew Knowles (exec. prod.)

I Am… Sasha Fierce, Columbia Records, 2008 
https://youtu.be/4m1EFMoRFvY

Main idea

https://youtu.be/4m1EFMoRFvY
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Abstract

Graph Isomorphism is the prime example of a compu-

tational problem with a wide difference between the best

known lower and upper bounds on its complexity. There is

a significant gap between extant lower and upper bounds for

planar graphs as well. We bridge the gap for this natural

and important special case by presenting an upper bound

that matches the known log-space hardness [JKMT03]. In

fact, we show the formally stronger result that planar graph

canonization is in log-space. This improves the previously

known upper bound of AC1 [MR91].

Our algorithm first constructs the biconnected component

tree of a connected planar graph and then refines each

biconnected component into a triconnected component tree.

The next step is to log-space reduce the biconnected planar

graph isomorphism and canonization problems to those

for 3-connected planar graphs, which are known to be

in log-space by [DLN08]. This is achieved by using the

above decomposition, and by making significant modifica-

tions to Lindell’s algorithm for tree canonization, along with

changes in the space complexity analysis.

The reduction from the connected case to the biconnected

case requires further new ideas, including a non-trivial case

analysis and a group theoretic lemma to bound the number

of automorphisms of a colored 3-connected planar graph.

This lemma is crucial for the reduction to work in log-space.

1. Introduction

The graph isomorphism problem GI consists of deciding

whether there is a bijection between the vertices of two

graphs, which preserves the adjacency relations. The wide

gap between the known lower and upper bounds has kept

alive the research interest in GI.
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§Supported by DFG grants TO 200/2-2.

The problem is clearly in NP and by a group theoretic

proof also in SPP [AK06]. This is the current frontier of

our knowledge as far as upper bounds go. The inability to

give efficient algorithms for the problem would lead one

to believe that the problem is provably hard. NP-hardness

is precluded by a result that states if GI is NP-hard then

the polynomial time hierarchy collapses to the second level

[BHZ87], [Sch88]. What is more surprising is that not even

P-hardness is known for the problem. The best we know

is that GI is hard for DET [Tor04], the class of problems

NC1-reducible to the determinant, defined by Cook [Coo85].

While this enormous gap has motivated a study of iso-

morphism in general graphs, it has also induced research in

isomorphism restricted to special cases of graphs where this

gap can be reduced. Tournaments are an example of directed

graphs where the DET lower bound is preserved [Wag07],

while there is a quasi-polynomial time upper bound [BL83].

Trees are an example of graphs where the lower and

upper bounds match and are L [Lin92]. Note that for trees,

the problem’s complexity crucially depends on the input

encoding: if the trees are presented as strings then the lower

and upper bound are NC1 [MJT98], [Bus97]). Lindell’s log-

space result has been extended to partial 2-trees, also known

as generalized series-parallel graphs [ADK08]. Trees and

partial 2-trees are special cases of planar graphs.

In this paper we consider planar graph isomorphism and

settle its complexity by significantly improving the known

upper bound of AC1 . The result is particularly satisfying,

because Planar Graph Isomorphism turns out to be complete

for a well-known and natural complexity class, namely log-

space: L.
Planar Graph Isomorphism has been studied in its own

right since the early days of computer science. Wein-

berg [Wei66] presented an O(n2) algorithm for testing

isomorphism of 3-connected planar graphs. Hopcroft and

Tarjan [HT74] extended this to general planar graphs, im-

proving the time complexity to O(n log n). Hopcroft and

Wong [HW74] further improved it to O(n). Recently Kuk-

luk, Holder, and Cook [KHC04] gave an O(n2) algorithm
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Product is graph tensor product
Synchronous execution of two systems

× =



Product in  is graph tensor productD
Temporary state names

c
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Product in  is graph tensor productD
Cartesian product of the states
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Product in  is graph tensor productD
Arrows iff arrows between both components
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Product in  is graph tensor productD
We forget the state names once again

× =



Products “preserve” behaviours
 is a minor of  for A A × B B ≠ ∅
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Products “preserve” behaviours
 is a minor of  for A A × B B ≠ ∅

× =



Products “preserve” behaviours
 is a minor of  for A A × B B ≠ ∅

× =

more precisely: a connected  
is a minor of each connected 
component of  for 

A

A × B B ≠ 0



No unique 
factorisation 😭
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Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



Polynomial equations



• Consider the equation


• There is least one solution

For the analysis of complex systems
Polynomial equations over D

X = Y = Z =

X + Y2 = Z +



Undecidability of 
polynomial equations



• There is an injective homomorphism 





•  fixed points behave exactly as the integer 


• So  contains a isomorphic copy of 

φ : ℕ → D

φ(n) = 1 + 1 + ⋯ + 1
n times

= + + ⋯+
n times

n n

D ℕ

This means trouble
 is a subsemiring of ℕ D



• If a multivariate polynomial equation over  has a solution 
in , then it also has a solution in  (just replace each 
system by its size!)


• In the larger semiring  we may find extra solutions, 
but only if the equation is already solvable over the naturals


• Then, by reduction from Hilbert’s 10th problem, we obtain 
the undecidability in  of polynomial equations over …


• …and thus of arbitrary equations over 

ℕ
D ℕ

D

D ℕ

D

Unsolvability of polynomial equations
Hilbert’s 10th problem over D



Polynomial equations 
with constant RHS are 
decidable and in NP



Systems of linear equations 
with constant RHS 
are -completeNP



• Given a 3CNF Boolean formula , is there a satisfying 
assignment such that exactly one literal per clause is true?


• For each variable  of  we have one equation , 
forcing one between  and  to be , and the other to be 


• For each clause, for instance , we have one 
equation , which forces exactly one variable to 


• These are all linear, constant-RHS equations over  and more 
specifically over  , and its solutions are the same as the 
satisfying assignments of  with one true literal per clause

φ

x φ X + X′ = 1
X X′ 1 0

(x ∨ ¬y ∨ z)
X + Y′ + Z = 1 1

D
ℕ

φ

By reduction from One-in-three-3SAT
-hardness of linear systemsNP



A single linear, 
constant-RHS equation 
is -complete*NP

* Main idea by Florian Bridoux, bravo !



• Here the vectors are dynamical systems and the scalars 
are naturals


• Trivial because the semimodule axioms are a consequence 
of  being a subsemiring of 


•  as a semimodule has a unique, countably infinite basis  
consisting of all nonempty, connected dynamical systems

ℕ D

D

Like a vector space, but over a semiring
 is a -semimoduleD ℕ



• Let  be the previous system 
of equations, with 


• Take any  easy-to-compute, linearly independent systems 
, for instance





• Then the equation  
is a linear equation over  having the same solutions  
as the original system

p1( ⃗X ) = 1,…, pn( ⃗X ) = 1
pi ∈ ℕ[ ⃗X ]

n
e1, …en ∈ D

e1 = e2 = e3 = e4 = ⋯

e1p1( ⃗X ) + ⋯+enpn( ⃗X ) = e1+⋯+en
D[ ⃗X ]

Several  linear equations to one  equationℕ[ ⃗X ] D[ ⃗X ]

Reducing the system of equations to one



Even equations over cycles, even in explicit form!
Linear, constant-RHS eqns are -completeNP

• Let 
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of equations, with 


• Recall that  is a -semimodule with basis all connected systems
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👈



Irreducible systems



• Formally:





• Notice that this is the opposite of , where irreducible 
(aka prime) integers are scarce)

lim
n→∞

number of reducible systems over ≤ n states
total number of systems over ≤ n states

= 0

ℕ

 is irreducible iff  implies  or A A = BC B = 1 C = 1

Most dynamical systems are irreducible



Prime system



• If a prime  appears in a factorisation into irreducibles 
of a system, then it appears in all factorisations


• On the contrary, non-prime systems can sometimes be replaced


• So prime systems are irreplaceable building blocks


• We don’t know if prime systems exist yet!


• But we know several nonprimes, for instance 

P

 is prime iff  implies  or P ≠ 0,1 P ∣ AB P ∣ A P ∣ B
Prime system

× = = ×



• If  is disconnected, then  is not prime


• If  is connected but of period , then  is not prime


• If  is connected of period , but





then  is not prime


• In particular, systems consisting of sums of cycles 
(i.e., the asymptotic behaviours of any system) are nonprime

A A

A > 1 A

A 1

gcd(A) = gcd{#preimages of a : a ∈ A} > 1

A

Work by Johan Couturier, bien joué !
More interesting classes of nonprimes



• We do not know an algorithm for primality testing!


• Nonprimes are recursively enumerable


• Enumerate systems ,  to find a counterexample 
to the primality of , i.e.,  but  and 


• No known way to bound the size of counterexamples


• Fun fact: if primality is undecidable, then primes do exist 😄

A B
P P ∣ AB P ∤ A P ∤ B

Most. Annoying. Open. Problem. Ever. 😡
Is primality decidable?



Open problems



• Do prime systems exist at all? Is primality decidable?


• Is this particular guy here prime?


• What is the complexity of deciding if ? 
And deciding if  is irreducible?


• Does it make any sense to adjoin the additive inverses 
in order to obtain a ring?


• Is it useful to find nondeterministic dynamical system  
(i.e., arbitrary graph) solutions to equations?


• Semirings of infinite discrete-time dynamical systems

A ∣ B
A

Algebraic ones
Open problems



• Find larger classes of solvable equations, 
e.g., by number of variables or degree of the polynomials


• Discover classes of equations solvable efficiently


• Probably very hard for systems in succinct form


• Find out if there exist decidable equations harder than 


• It would feel strange to jump from  to undecidable

NP

NP

Solving equations
Open problems



Thanks for your attention! 
Merci de votre attention !



Any questions?


