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Note: all reaction systems
in this talk are without context



f : 2S → 2S

power set
function

f (∅) = f (S) = ∅
boundary
power set
function



f = resA for some A

f is a boundary power set function

Theorem

m



Proof idea

f (X ) = Y

⇓
(X , S − X ,Y )



({x}, I ,P)

(R , {y},P)

({x}, {y},P)

reactant-minimal
(only 1 reactant)

inhibitor-minimal
(only 1 inhibitor)

resource-minimal
(only 1 reactant
and 1 inhibitor)



f (X ∪ Y ) ⊆ f (X ) ∪ f (Y )

f (X ∩ Y ) ⊆ f (X ) ∪ f (Y )

union-subadditive

intersection-subadditive



Examples

({a, b}, {c , d}, {a, b})

resA({a} ∪ {b}) = resA({a, b}) = {a, b}
*

resA({a}) ∪ resA({b}) = ∅

Not union-subadditive



Examples

({a, b}, {c , d}, {a, b})

resA({a, b, c} ∩ {a, b, d}) = resA({a, b}) = {a, b}
*

resA({a, b, c}) ∪ resA({a, b, d}) = ∅

Not intersection-subadditive



Theorem

f is union-subadditive

m
f = resA for some reactant-minimal A

f is intersection-subadditive

m
f = resA for some inhibitor-minimal A



Reactant-minimal ⇒ union-subadditive

a ∈ enA(T ∪ U)

Ra = {x} ⊆ T ∪ U Ia ∩ (T ∪ U) = ∅

{x} ⊆ T or {x} ⊆ U Ia ∩ T = ∅ and Ia ∩ U = ∅

a ∈ enA(T ) or a ∈ enA(U)

resA(T ∪ U) ⊆ resA(T ) ∪ resA(U)



f is union- and intersection-subadditive

f = resA for some resource-minimal A

Theorem

m



Dynamics

∅

{a}

{b}

{c}

{a, b}

{a, c}

{b, c}

{a, b, c}

restA(T )



Dynamics

∅

{a}

{b}

{c}

{a, b}

{a, c}

{b, c}

{a, b, c}

Cycles



Dynamics

∅

{a}

{b}

{c}

{a, b}

{a, c}

{b, c}

{a, b, c}

Fixed points



Implementing binary counters

0 1101 1

b5 b3 b1 b0{ }, , ,



Incrementing binary counters

0 1101 1︸ ︷︷ ︸
carry

︷ ︸︸ ︷no carry

101 1 0 0



({bi−1, bi−2, ... , b0}, {bi}, {bi})

Reactions for incrementing binary counters

({bi}, {bj}, {bi})

({bi}, {b0}, {b0})

for 1 ≤ i ≤ n

for 0 ≤ j < i ≤ n

for 1 ≤ i ≤ n

carry

flip least significant bit
preserve 1 if no carry



Long paths → binary counters
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Long cycles → binary counters
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Turing machines (with bounded tape)

a
a

a ab
b b

q

1 2

3 4
5 6

7

q a

q b

r a

r b

→
→
→
→

q b .

r a .

q a /

r a .



Turing machines (with bounded tape)

a
a

a ab
b b

q

1 2

3 4
5 6

7

a
a

a ab
a b

r

1 2

3 4
5 6

7



Encoding as reaction system

a
a

a ab
b b

q

1 2

3 4
5 6

7

{a1, b2, b3, a4, a5, a6, b7, q3}



Encoding as reaction system

q a

q b

r a

r b

→
→
→
→

q b .

r a .

q a /

r a .

({q1, a1}, {♠}, {q2, b1})

({q2, a2}, {♠}, {q3, b2})

({q6, a6}, {♠}, {q7, b6})

...



Encoding as reaction system

q a

q b

r a

r b

→
→
→
→

q b .

r a .

q a /

r a .

({r2, a2}, {♠}, {q1, a2})

({r7, a7}, {♠}, {q6, a7})

...

({r3, a3}, {♠}, {q2, a3})



Preserving the tape

({a1}, {q1, r1}, {a1})

({a7}, {q7, r7}, {a7})

...

a
a

a ab
b b

q

1 2

3 4
5 6

7

({a2}, {q2, r2}, {a2})
({b1}, {q1, r1}, {b1})

({b7}, {q7, r7}, {b7})

...

({b2}, {q2, r2}, {b2})



Computation step

a
a

a ab
b b

q

1 2

3 4
5 6

7

a
a

a ab
a b

r

1 2

3 4
5 6

7

{a1, b2, b3, a4, a5, a6, b7, q3}

{a1, b2, a3, a4, a5, a6, b7, r4}
resA



T2

T3

T4

T1

T0

Malformed states



Complexity of the dynamics of reaction systems

Deciding if configuration C2 is reachable
from configuration C1 is intractable
(PSPACE-complete) for Turing machines
with bounded tapes.

Deciding if state U is reachable from
state T is intractable (PSPACE-complete)
for reaction systems

⇓



f is union- and intersection-subadditive

f = resA for some resource-minimal A

Does minimality make a difference?

m



Theorem

For each reaction system A there exists
a resource-minimal B such that

res2t
B (U) = restA(U)



Proof idea

a = ({x , y}, {z}, {w}) b = ({v}, {z ,w}, {z})

{x , y}

{b̄,♥}

{w}

{v}

{ā,♥}

{z}

{x , z}

{ā, b̄,♥}

∅

{x , y , v}

{♥}

{w , z}



Proof idea: given a = (Ra, Ia,Pa)

Reactant missing?

({x}, {y}, {ā})

({x}, {♥}, {ā})

({♥}, {ā}, {Pa})

({x}, {♥}, {♥})

for y ∈ Ra, x ∈ S − {y}

for x ∈ Ia

for x ∈ S

Any inhibitor?

If not disabled, produce Pa

Make ♥ every other step



Proof idea: given a = (Ra, Ia,Pa)

Reactant missing?

({x}, {y}, {ā})

({x}, {♥}, {ā})

({♥}, {ā}, {Pa})

({x}, {♥}, {♥})

for y ∈ Ra, x ∈ S − {y}

for x ∈ Ia

for x ∈ S

Any inhibitor?

If not disabled, produce Pa

Make ♥ every other step
Minimal!



Dynamics
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Dynamics
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Malformed states



T2
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T4

T1
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T4
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Minimality does not make things easier

Deciding if configuration C2 is reachable
from configuration C1 is intractable
(PSPACE-complete) for Turing machines
with bounded tapes.

Deciding if state U is reachable from
state T is intractable (PSPACE-complete)
for resource-minimal reaction systems

⇓



Long sequences in resource-minimal reaction systems

There exists a resource-minimal reaction
system with |S | = n having a terminating
state sequence of length Θ(3n/4)

T0
∅

T1

T2︸ ︷︷ ︸
Θ(3n/4)



Long sequences in almost-minimal reaction systems

There exists a reaction system with at
most 3 resources per reaction and |S | = n
having a terminating state sequence of
length Θ(3n/3)

T0
∅

T1

T2︸ ︷︷ ︸
Θ(3n/3)



Long cycles in almost-minimal reaction systems

There exists a reaction system with at
most 3 resources per reaction and |S | = n
having a cycle of length Θ(3n/3)

T0

T1
T2

Θ(3n/3)



Does minimality make a difference here?

Θ(3n/3) ≈ Θ(1.44n)

Θ(3n/4) ≈ Θ(1.32n)

Θ(2n) → optimalGeneric

Resource-minimal

Almost-minimal

Type Longest sequence known


