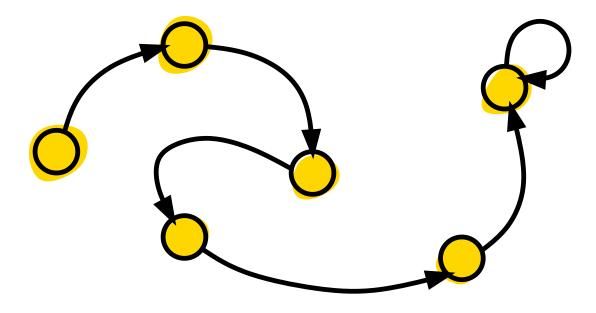
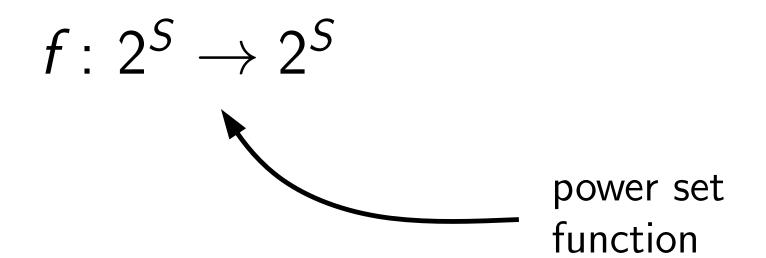
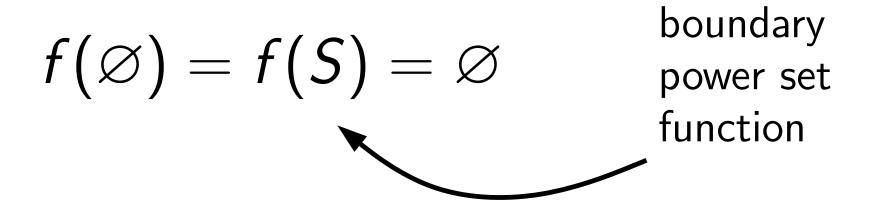
Dynamics of reaction systems



Luca Manzoni, Antonio E. Porreca {luca.manzoni, porreca}@disco.unimib.it Università degli Studi di Milano-Bicocca Note: all reaction systems in this talk are without context





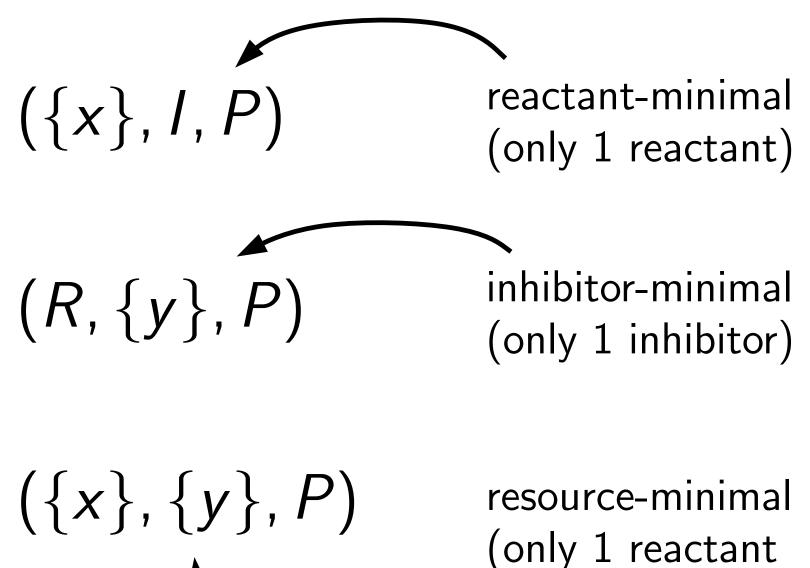
Theorem

$f = \operatorname{res}_{\mathcal{A}} \text{ for some } \mathcal{A}$

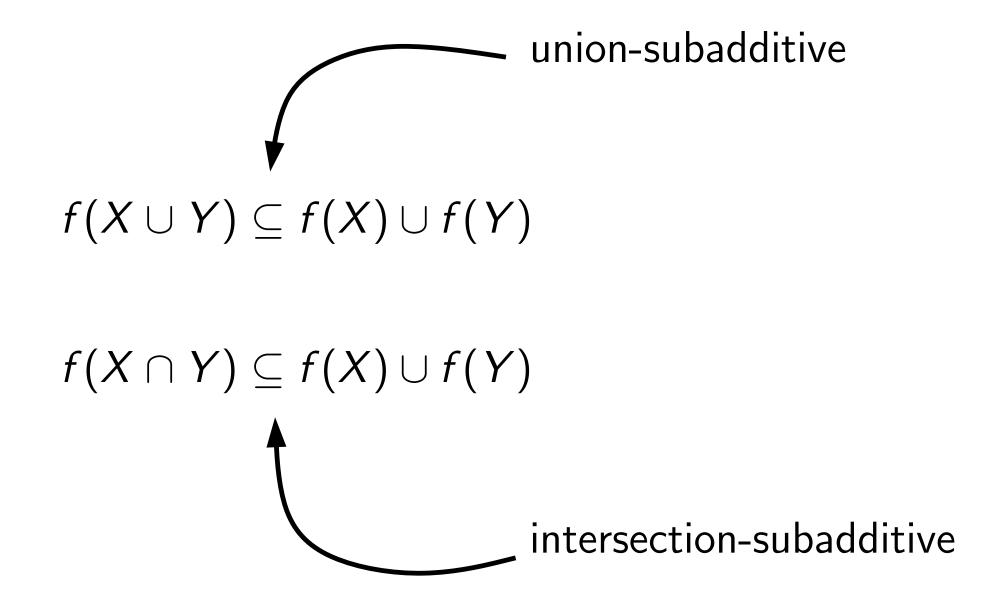
f is a boundary power set function

Proof idea

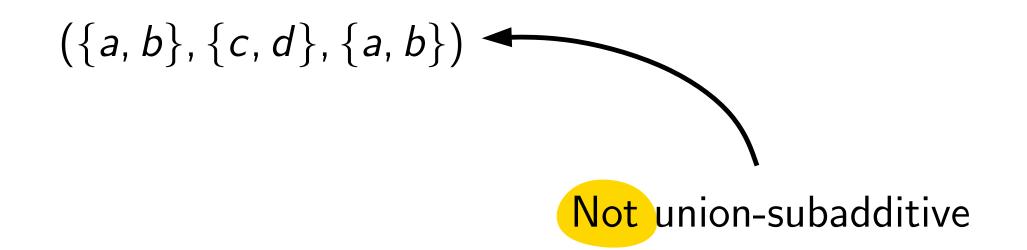
f(X) = Y \downarrow (X, S - X, Y)



and 1 inhibitor)



Examples



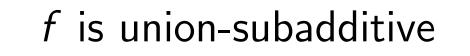
$$\operatorname{res}_{\mathcal{A}}(\{a\} \cup \{b\}) = \operatorname{res}_{\mathcal{A}}(\{a, b\}) = \{a, b\}$$
$$\stackrel{\text{trs}}{\longrightarrow} \operatorname{res}_{\mathcal{A}}(\{a\}) \cup \operatorname{res}_{\mathcal{A}}(\{b\}) = \emptyset$$

Examples

({a, b}, {c, d}, {a, b}) Not intersection-subadditive

$$\operatorname{res}_{\mathcal{A}}(\{a, b, c\} \cap \{a, b, d\}) = \operatorname{res}_{\mathcal{A}}(\{a, b\}) = \{a, b\}$$
$$\stackrel{\text{tres}}{\longrightarrow}$$
$$\operatorname{res}_{\mathcal{A}}(\{a, b, c\}) \cup \operatorname{res}_{\mathcal{A}}(\{a, b, d\}) = \varnothing$$

Theorem



f is intersection-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some inhibitor-minimal \mathcal{A}

 $\mathsf{Reactant-minimal} \Rightarrow \mathsf{union-subadditive}$

$$a \in \operatorname{en}_{\mathcal{A}}(T \cup U) \longrightarrow A = \{x\} \subseteq T \cup U \qquad I_{a} \cap (T \cup U) = \emptyset$$

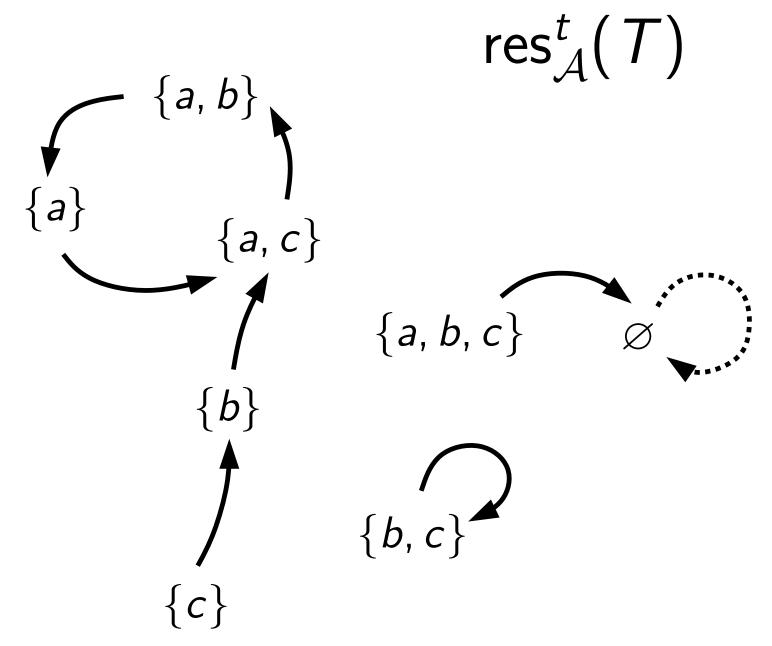
$$\{x\} \subseteq T \text{ or } \{x\} \subseteq U \qquad I_{a} \cap T = \emptyset \text{ and } I_{a} \cap U = \emptyset$$

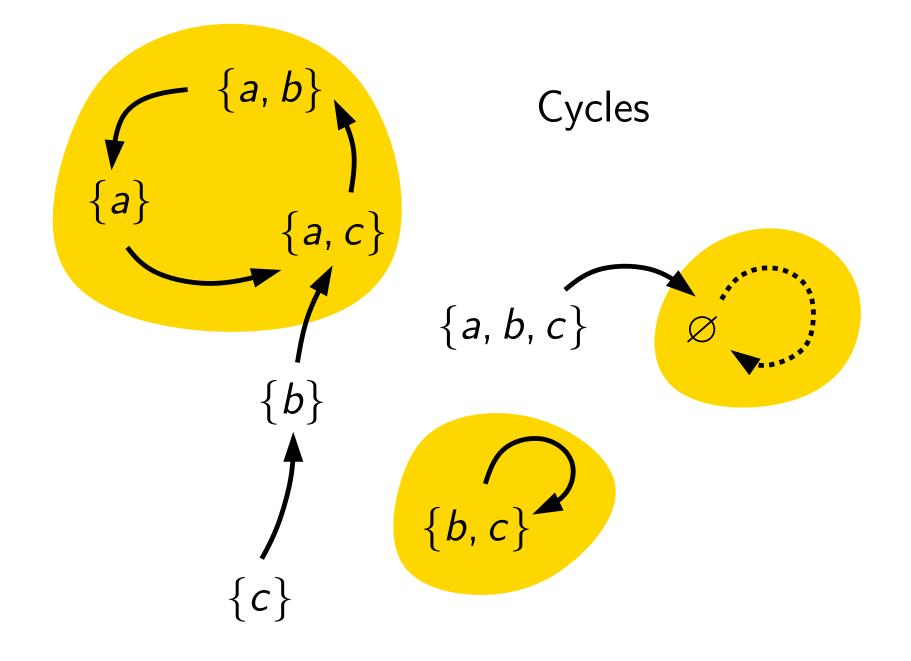
$$a \in \operatorname{en}_{\mathcal{A}}(T) \text{ or } a \in \operatorname{en}_{\mathcal{A}}(U) \longrightarrow$$

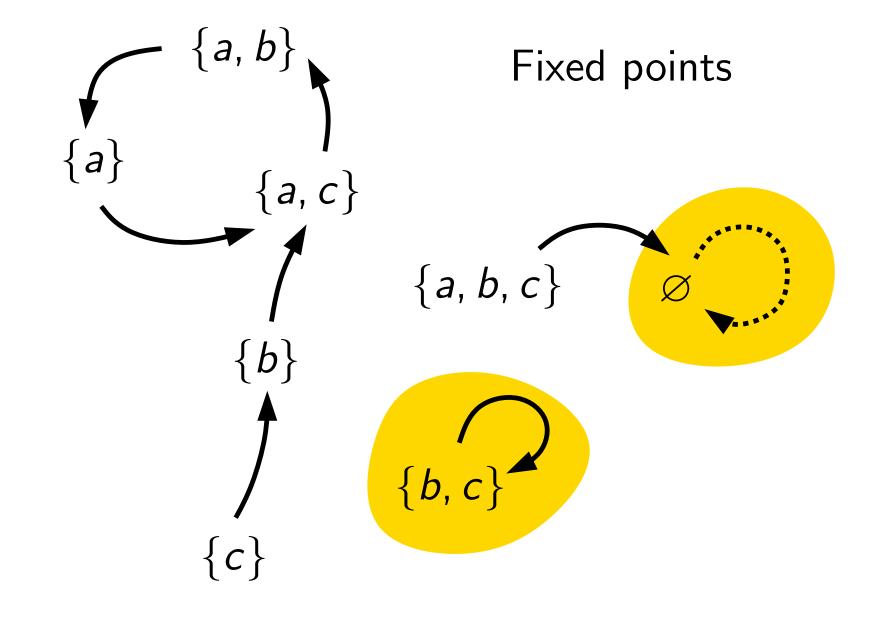
$$\operatorname{res}_{\mathcal{A}}(T \cup U) \subseteq \operatorname{res}_{\mathcal{A}}(T) \cup \operatorname{res}_{\mathcal{A}}(U)$$

f is union- and intersection-subadditive

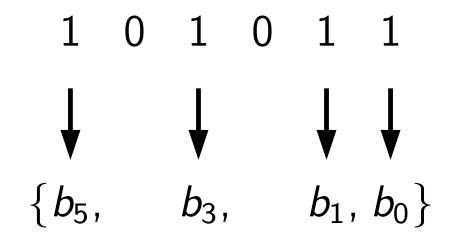
 $f = \operatorname{res}_{\mathcal{A}}$ for some resource-minimal \mathcal{A}



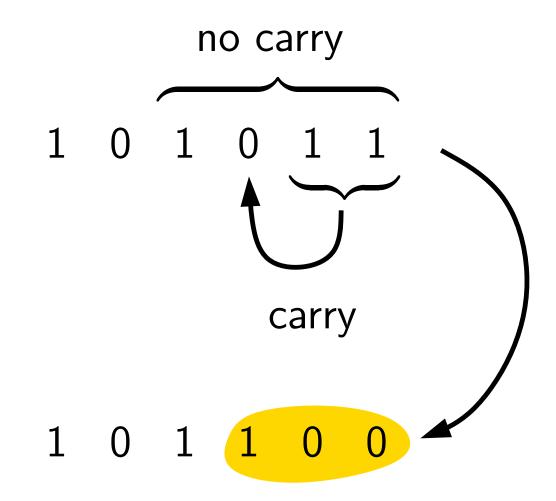




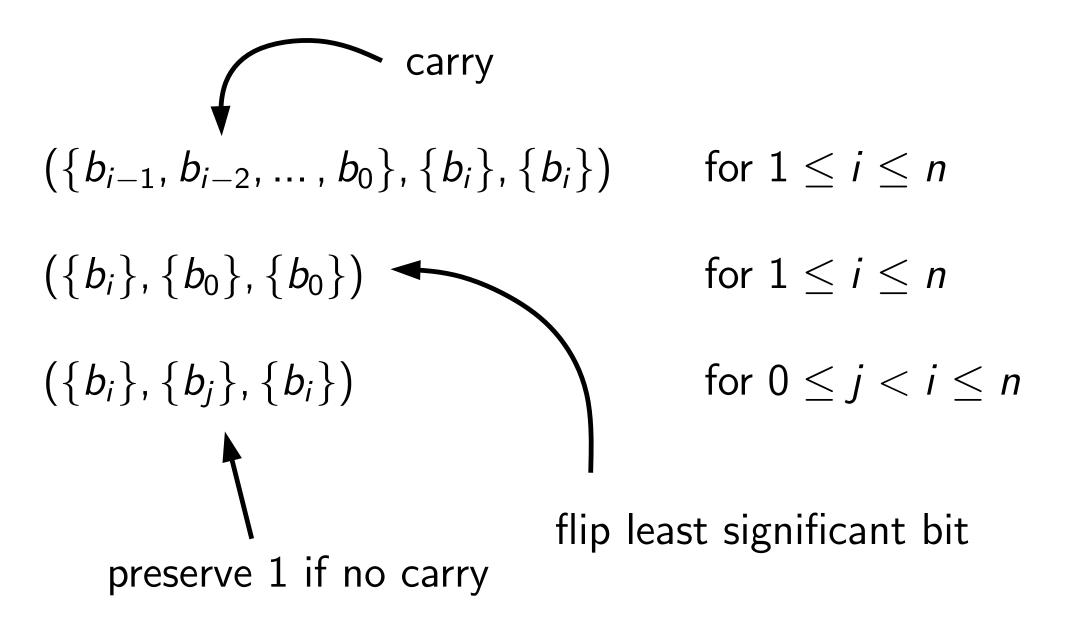
Implementing binary counters



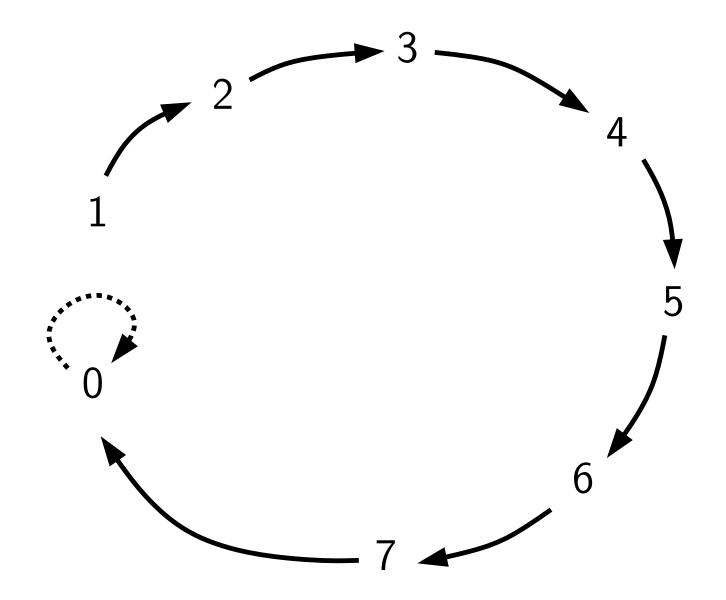
Incrementing binary counters



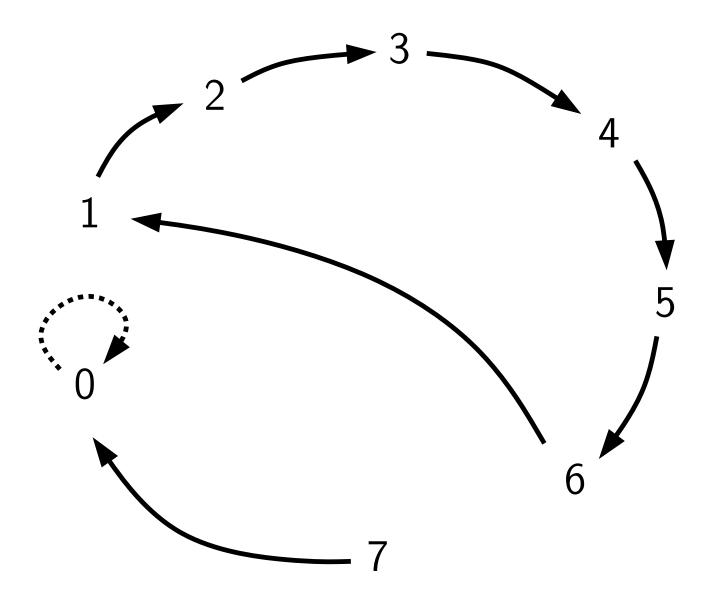
Reactions for incrementing binary counters



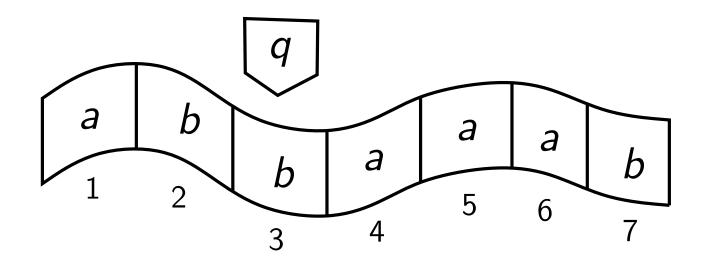
Long paths \rightarrow binary counters



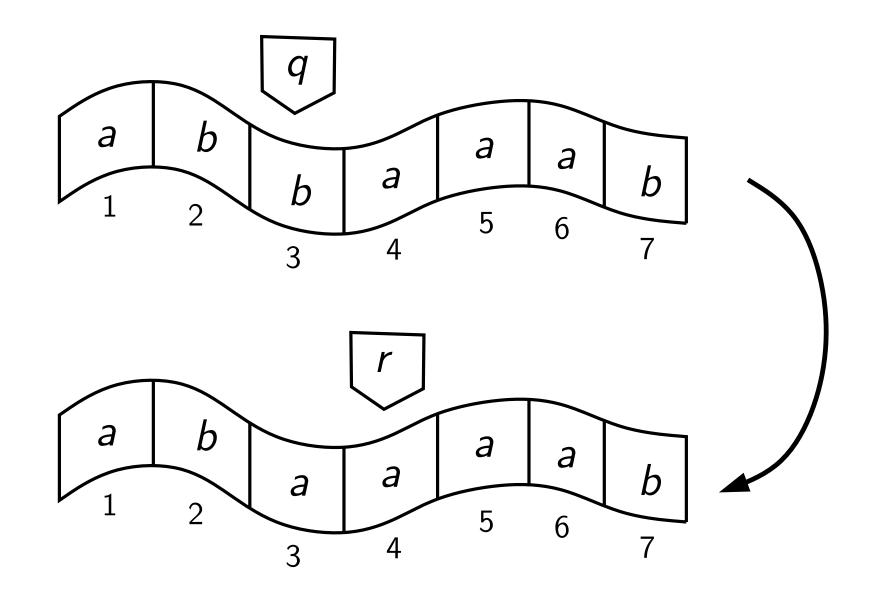
Long cycles \rightarrow binary counters



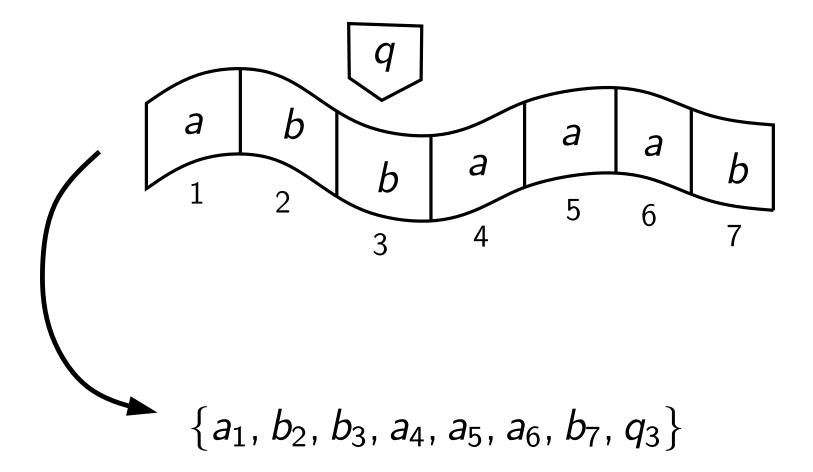
Turing machines (with bounded tape)



Turing machines (with bounded tape)

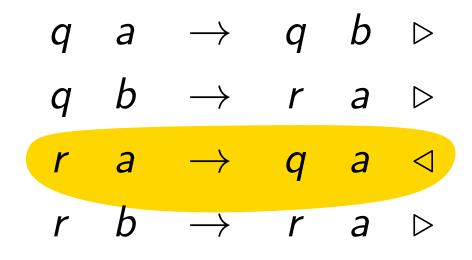


Encoding as reaction system



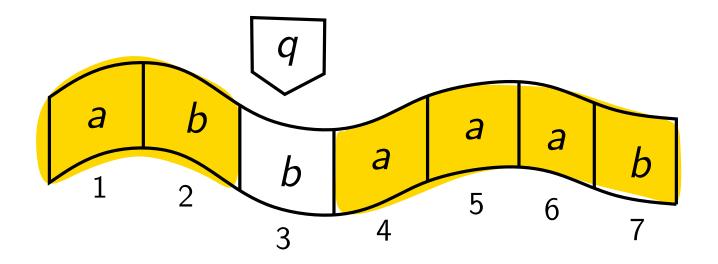
Encoding as reaction system

Encoding as reaction system



 $(\{r_2, a_2\}, \{\clubsuit\}, \{q_1, a_2\})$ $(\{r_3, a_3\}, \{\clubsuit\}, \{q_2, a_3\})$ \vdots $(\{r_7, a_7\}, \{\clubsuit\}, \{q_6, a_7\})$

Preserving the tape

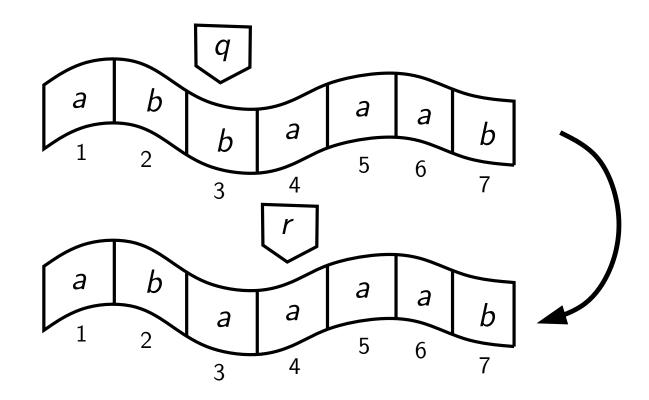


 $(\{a_1\}, \{q_1, r_1\}, \{a_1\}) \\ (\{a_2\}, \{q_2, r_2\}, \{a_2\})$

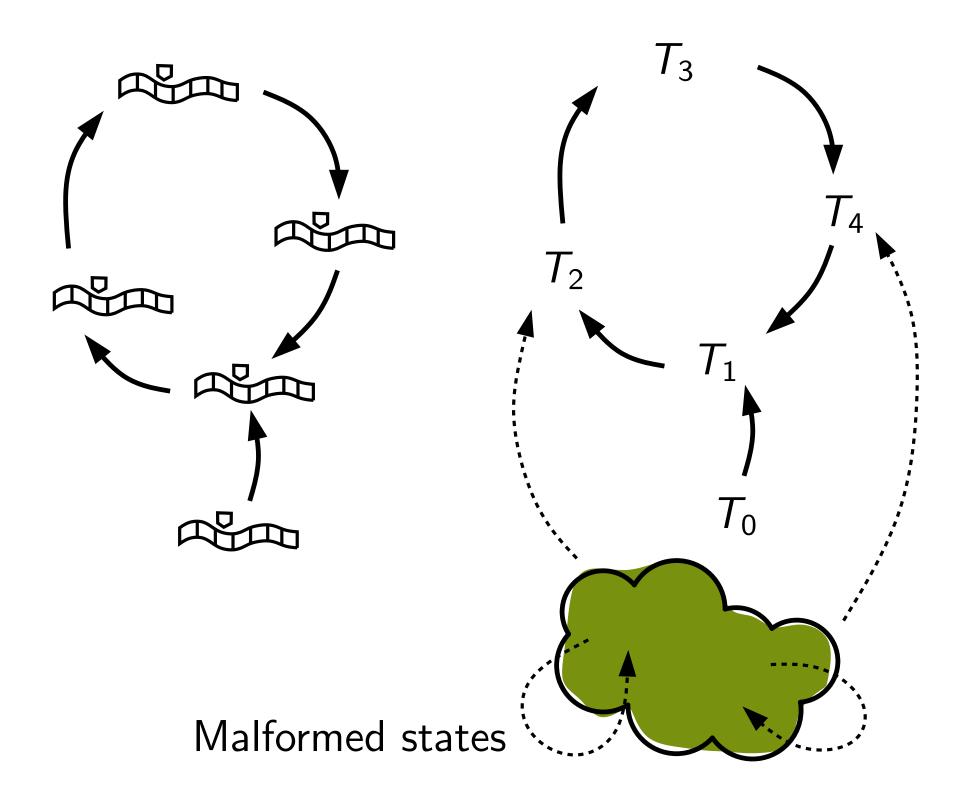
 $(\{b_1\}, \{q_1, r_1\}, \{b_1\})$ $(\{b_2\}, \{q_2, r_2\}, \{b_2\})$

 $(\{a_7\}, \{q_7, r_7\}, \{a_7\})$ $(\{b_7\}, \{q_7, r_7\}, \{b_7\})$

Computation step



$$\operatorname{res}_{\mathcal{A}} \left\{ a_{1}, b_{2}, b_{3}, a_{4}, a_{5}, a_{6}, b_{7}, q_{3} \right\} \\ \left\{ a_{1}, b_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{7}, r_{4} \right\}$$



Complexity of the dynamics of reaction systems

Deciding if configuration C_2 is reachable from configuration C_1 is intractable (PSPACE-complete) for Turing machines with bounded tapes.

 \bigvee

Deciding if state U is reachable from state T is intractable (PSPACE-complete) for reaction systems Does minimality make a difference?

f is union- and intersection-subadditive

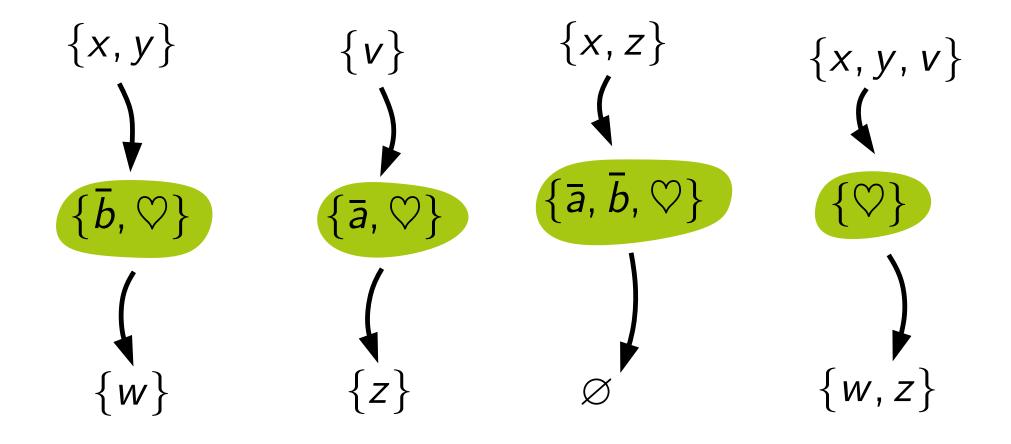
 $f = \operatorname{res}_{\mathcal{A}}$ for some resource-minimal \mathcal{A}

For each reaction system \mathcal{A} there exists a resource-minimal \mathcal{B} such that

 $\operatorname{res}_{\mathcal{B}}^{2t}(U) = \operatorname{res}_{\mathcal{A}}^{t}(U)$

Proof idea

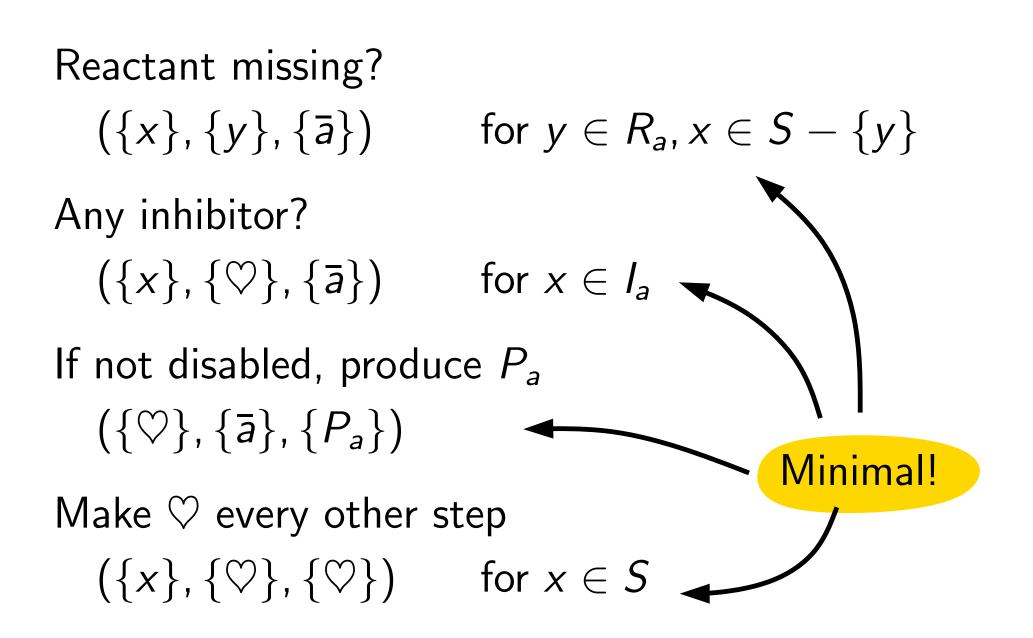
$$a = (\{x, y\}, \{z\}, \{w\}) \quad b = (\{v\}, \{z, w\}, \{z\})$$

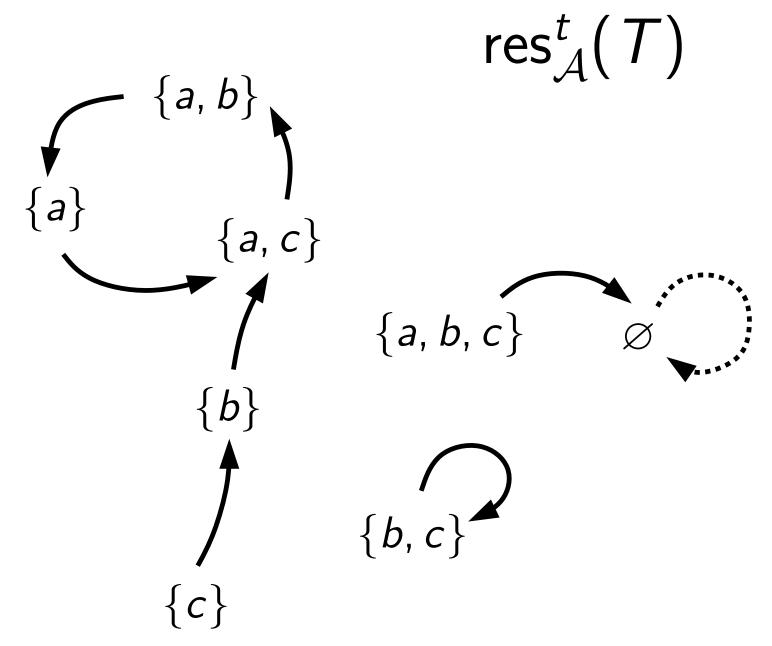


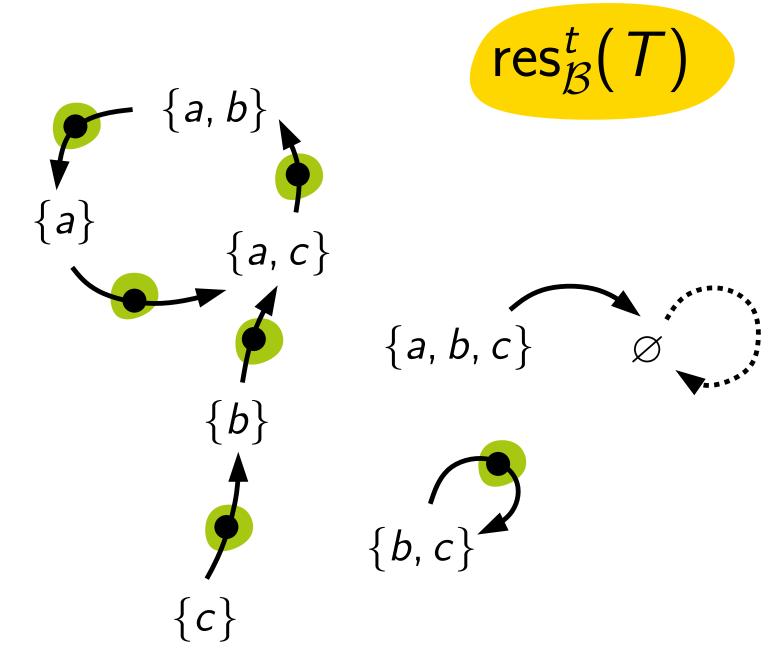
Proof idea: given $a = (R_a, I_a, P_a)$

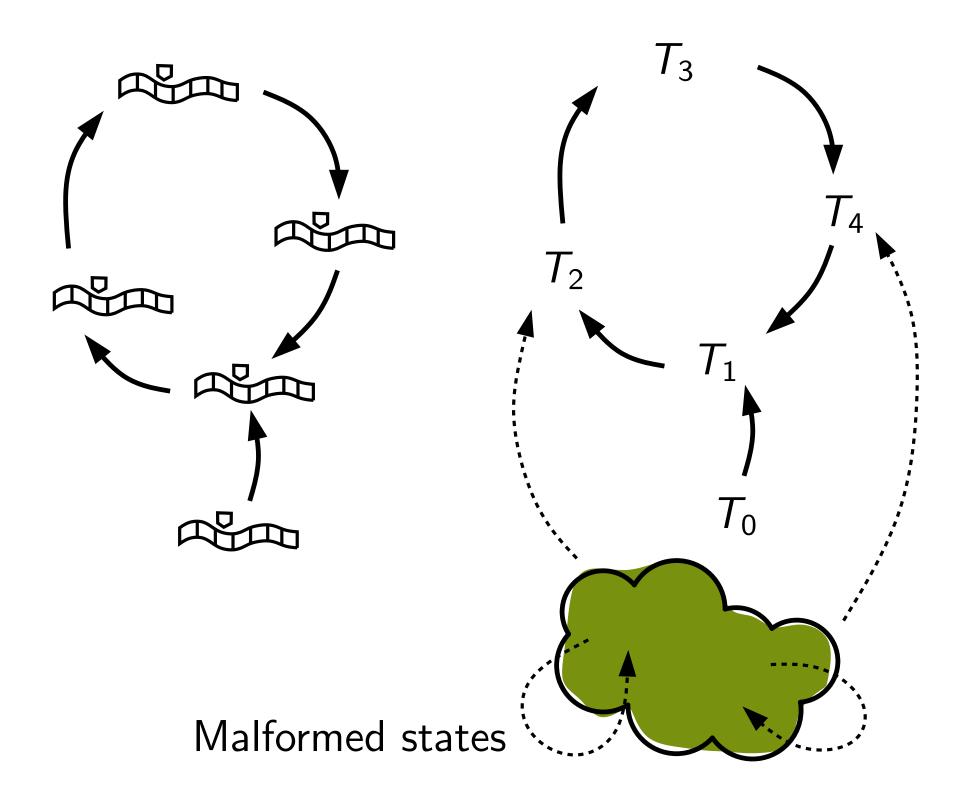
Reactant missing? $(\{x\}, \{y\}, \{\bar{a}\})$ for $y \in R_a$, $x \in S - \{y\}$ Any inhibitor? $(\{x\}, \{\heartsuit\}, \{\overline{a}\})$ for $x \in I_a$ If not disabled, produce P_a $(\{\heartsuit\}, \{\bar{a}\}, \{P_a\})$ Make \heartsuit every other step $(\{x\},\{\heartsuit\},\{\heartsuit\})$ for $x \in S$

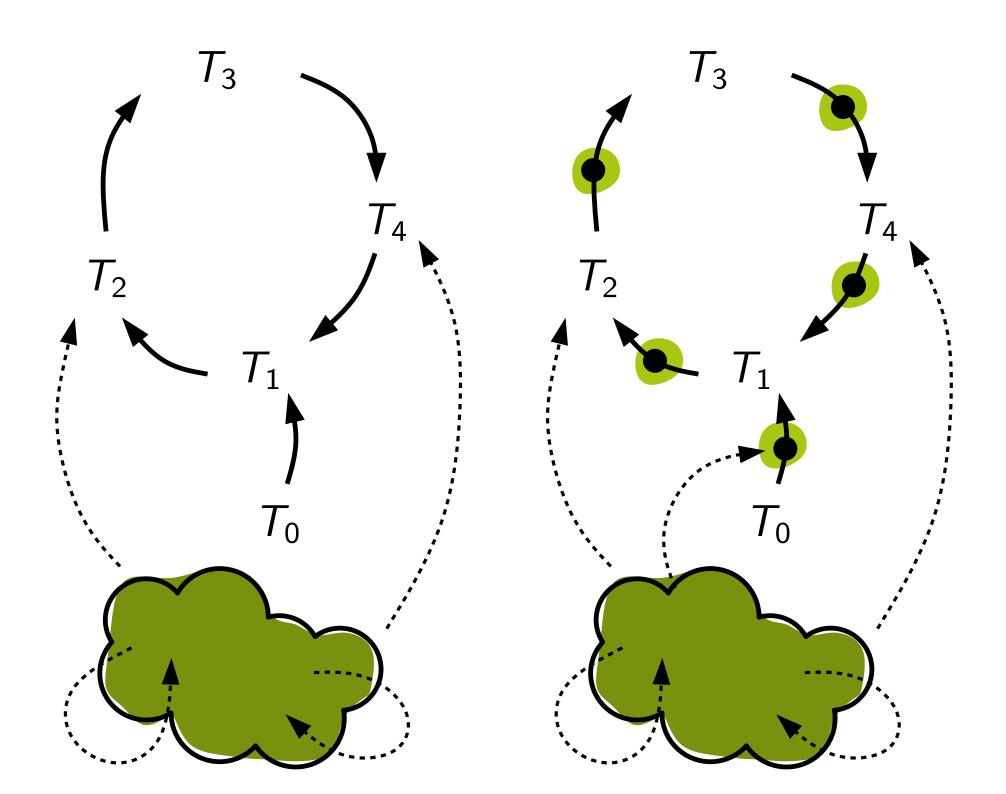
Proof idea: given $a = (R_a, I_a, P_a)$











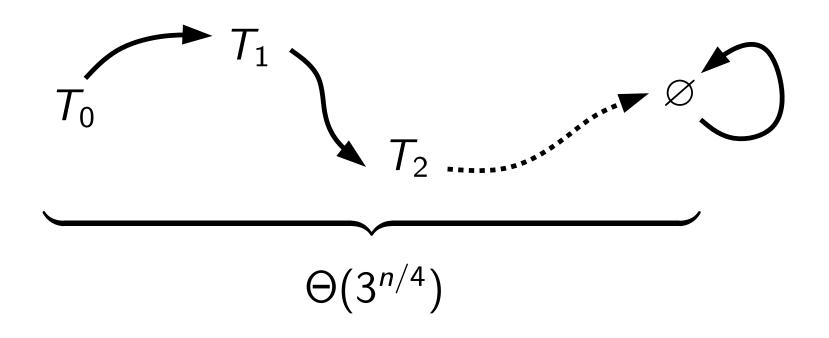
Minimality does not make things easier

Deciding if configuration C_2 is reachable from configuration C_1 is intractable (PSPACE-complete) for Turing machines with bounded tapes.

 \downarrow

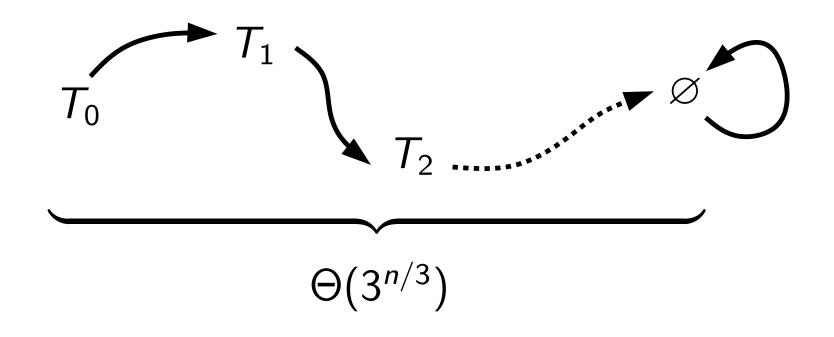
Deciding if state U is reachable from state T is intractable (PSPACE-complete) for resource-minimal reaction systems Long sequences in resource-minimal reaction systems

There exists a resource-minimal reaction system with |S| = n having a terminating state sequence of length $\Theta(3^{n/4})$



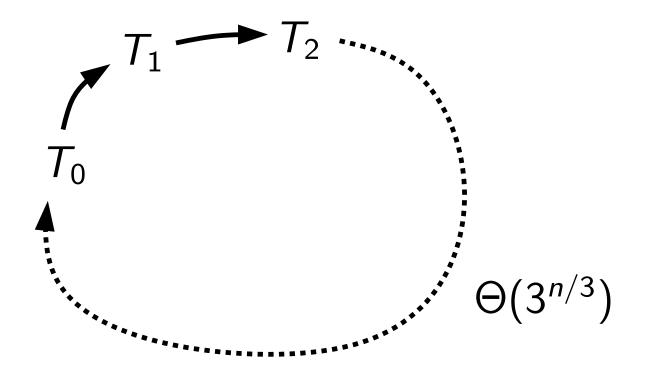
Long sequences in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and |S| = nhaving a terminating state sequence of length $\Theta(3^{n/3})$



Long cycles in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and |S| = n having a cycle of length $\Theta(3^{n/3})$



Does minimality make a difference here?

Туре	Longest sequence known
Generic	$\Theta(2^n) ightarrow optimal$
Almost-minimal	$\Theta(3^{n/3}) pprox \Theta(1.44^n)$
Resource-minimal	$\Theta(3^{n/4}) pprox \Theta(1.32^n)$