Enzymatic numerical P system
using elementary arithmetic operations

Name olents gﬂ@gg” ng%g/_@ Mauri,

%Q»g*d@m &, Jonecay Blaudio Landnon
SChOOl %wafd %: Sojfudc di d//@x/amﬁggchca
Subject 14% @ﬁm&@g O d%%/mﬂname @ﬂfﬁé&?ﬁ

?XJ/]’I’VTI’WW%

e We study the computational complexity
of enzymatic numerical P systems as recognisers

e We show that the power of polynomial-time ENPs
changes depending on which operations are allowed

on the LHS of rules

P-ENP(+, —,

X, =)

P-ENP(+, —, x)

KP-ENP(JD

ﬁ

Gammary @

e We study the computational complexity
of enzymatic numerical P systems as recognisers
e We show that the power of polynomial-time ENPs

changes depending on which operations are allowed
on the LHS of rules

P-ENP(+, —, x)

KP-ENP(JD -

J@mmm/gaw%tam @

e Tree-like membrane structure
e Variables with non-negative integer values
e Programs of the form

F(xi,...,Xm) = aily1 + -+ an|¥m

J@mwwa/ga%tmrw @

e Tree-like membrane structure
e Variables with non-negative integer values
e Programs of the form

F(x1,...,Xm))— aily1 + -+ an|¥m

J@mwwa/ga%tmrw @

e Tree-like membrane structure
e Variables with non-negative integer values
e Programs of the form

Fxt, - Xm) H@@
N\l

J@Wwa/gawtexnw @

e Tree-like membrane structure
e Variables with non-negative integer values
e Programs of the form

F(xi,...,Xm) = aily1 + -+ an|¥m

e Variables on the LHS are zeroed
e Variable y; on the RHS gets a;/X;a; of the result

e Further type of program:

F(X17°°° 7Xm)’e — 31’)/1 + o T an’ym

e Further type of program:

Fxt, .o xm)ley= alys + -+ + anlym

?

I

e Further type of program:

F(Xlw”axm)e_)@”°+@
M)

e Variable e must not occur in PF or RHS

e Further type of program:
F(X17 R 7Xm)‘e — 31’)/1 T T an’ym

e Variable e must not occur in PF or RHS
e The program is enabled iff e > min{xy, ..., Xm}

Sequential: one program per region

All-parallel: each enabled program is executed
One-parallel: each variable may be used only once
In all-parallel and one-parallel mode

the ENPs can always be flattened

Sequential: one program per region

All-parallel) each enabled program is executed
One-pdrallel: each variable may be used only once
In all-parallel and one-parallel mode

the ENRs can always be@

et L € {0,1}*

et [1 be an ENP with variables accept and reject
For x € L, initialise 1 with 1x in an input variable
Assume [1 reaches a stable configuration

If x € L, then accept = 1 and reject = 0

If x ¢ L, then accept = 0 and reject = 1

et L € {0,1}*
L et [1 be an ENP with variables accept and reject
For x € L, initialise 1 with 1x in an input variable
Assume [1 reaches a stable configuration
If x € L, then accept = 1 and reject = 0
If x ¢ L, then accept = 0 and reject = 1

Complexiby classes

P-ENP(+, —)
P-ENP(+, —,)

P-ENP(+, —, x, =)

<

Complexiby classes

/@ENPH, —)

WENPH,—, %)
\@ENPH, — %, %)

Complexiby classes

P-ENP(+,=) Lon
P-ENP(+,&, x)

P-ENP(+,5), x, =)

Rrcomelmorm—rrens—mnarhimes @

Infinitely many registers (r; : i € N)

o /:ri =k
o l:ri=r;
o /:ri=r,
J
o l:ri=rjer
e /:if r # 0 then ¢ else ¢5
e (: accept
o (: reject

Infinitely many registers (r; : i € N)

S S SIS TS e S e SRR

. = K

:r,-==r cam be 4 _ .
= T has (1) coup/
. —I’ ® /

if r; # 0 then ¢ else /5

. accept

. reject

M5
Complexily

P-RAM(+, —)

=)
P-RAM(+, —, x

gymffaabg lasses %@& R oM 5

P-RAM(+, —) ~ P

P-RAM(+, —, x, =)

gymffaabg classes %@a RN 5 @

P-RAM(+, —) ~ P

P-RAM(+, —, x, =) = PSP@

obvoiding indinect addnessing (1) @

e Indirect addressing (and unbounded number
of registers) can be avoided in RAMs
e Represent the registers of a machine M

as a single base-b number
e Here b = 1 + largest number stored by M

r=b"1r, 1+ b"?%r, 5+ -+ btmy + Br

~—S

obvoiding indinect addnessing (1) @

e Indirect addressing (and unbounded number
of registers) can be avoided in RAMs
e Represent the registers of a machine M

as a single base-b number
e Here b = 1 + largest number stored by M

r=(b™tr,)+ b"?%r, 5+ -+ btmy + Brg

\

regiater. m1

~—S

Bveiding imdinect addnessimg (1)

of registers) can be avoided in RAMs

as a single base-b number

r=b"1tr, 1+ b"%r, 5+ ---

“Plle,

e Indirect addressing (and unbounded number
e Represent the registers of a machine M

e Here b = 1 + largest number stored by M

bl m bo o

~—S

Bvoiding imdinect addnessing (2) @

Proposition. If M is a RAM(+, —) working in t steps
on input x € N, then b =2t'x +1
obtained by repeated doubling

Proposition. If M is a RAM(+, —, x, =) working
in t steps on input x € N, then b = x2 +1
obtained by repeated squaring

Y o e s s @

Proposition. The operations x x y and x ~ y
can be executed in time O(|x|?) and O(|y|?)
by a RAM(+, —) by repeated doubling

Proposition. The operation x”can be executed in
polynomial time wrt O(|y|?) by a RAM(+, —, x, =)
by repeated squaring

Proposition. The operation x¥can be executed
in time O(y?|y|?|x|?) by a RAM(+, —)
by repeated squaring

SN~—

1 e=y

2 z=1

3 while e > 0 do

4 {x¢ x z=x"}
5 p=1

6 p =2

7 a=Xx

8 a =xxx

9 while p’ < e do
10 p=p

11 p=p +p
12 a:=a

13 a=a xa
14 end

15 {e—p<e/2}
16 e=¢e—p

17 z=2zxXa

gmw/je S » ik

—

13/2:

~——"

Simulating indinect addnessimg (1)

Assignment of a constant “r; := ¢”
z:=(r+b") modb
o= r— (2 x b) + (c x b
Copying the value of a register “r; == r;"
y:=(r=b) mod b
z:=(r+b") modb
r=r—(zxb)+ (y xb)

y = (r+ b') mod b
y'=(r+b") modb
Z: (r—b’) mod b
r=r—(zxb)+(y xb)

Copying the value of a register w/i.a. “r; = r,."

~—~—_A

S@m&aﬁ? imdineck addneasimg (2)

Arithmetical operations “r; := r; ® ;"
y1 = (r—bf) mod b
Yo = (I’ - bk) mod b
y=yey
z:=(r+5b'") modb
r=r—(zxb)+(yxb)
Conditional jump “if r; # 0 then ¢; else /5"
y = (I’+ bi) mod b
if y # 0 then ¢] else £

N

Theorem 1. Each RAM without indirect addressing
can be simulated by an EN P system using the same
number of steps

~2_"

Theorem 1. Each RAM without indirect addressing
can be simulated by an EN P system using the same
number of steps

Assignment of a constant “r; := ¢"

Ori + k + z|p, — 1|r;

pe — 1|pes1

~2_"

Theorem 1. Each RAM without indirect addressing
can be simulated by an EN P system using the same
number of steps

Assignment of a constant “r; := ¢"

Ori + k + Z‘pe — 1r;
pe — 1{pe+1
Copying the value of a register “r; == r;"
OI’,‘ + 2[’1 -+ Z|p£ —>]_|rl- +]_|rJ
pe = 1|pry1

~2_"

Gomuloking namdem. access mackimes (2) @

Arithmetical operations “r; == r; ® r;’

Or; + rj ® Iy —I—Z’pe —>].‘I’,'
i+ 2lpe = 111
Fk +Z|Pe — 1‘!’/(

pe — 1|pes1

N

EPW[CL[;(/,?WWWCW/Q)

Arithmetical operations “r; == r; ® r;’

Or; + rj ® Iy —I—Z’pe —>].‘I’,'
i+ 2lpe = 111
Fk +Z|Pe — 1‘!’/(

Pe¢ — 1‘P€+1
Conditional jump “if r; # 0 then ¢ else /5"

pe — 1|pe,
ri — 1|p, = 1|pg,

ri + 1|Pe — 1‘:062 @_;%®

N

Simulating SN P angstems (1)

repeat
save the current values of the variables
compute the variations due to p; (if applicable)

compute the variations due to p, (if applicable)
compute the new values of the variables
until a final configuration is reached

if 1 accepted then
accept

else
reject
end

N~

777777

Simulating SN P angstems (2)

Example: f(x;,..., %,)|e = a1|x1 + -+ + am|Xm
if e>x; ore>x; or--- or e > x; then
f = f(Xi17"‘7Xik)
xi =0
1
x; =0

ik
u=fFf=+(a+ -+ am)
A1 =N+ a1u

A, =N, + anu
end

S

Theorem 2. An ENP(+, —) can be simulated
in polynomial time by a RAM(+, —),
and an ENP(+, —, x, =) by a RAM(+, —, x, +)

20/

Moain rnesullf 20/

Theorem 2. An ENP(+, —) can be simulated
in polynomial time by a RAM(+, —),
and an ENP(+, —, x, =) by a RAM(+, —, x, +)

Theorem 3.

P-ENP(+,) = P-RAM(+,) = P
P-ENP(+, —, x, +) = P-RAM(+, —, x, =)
= PSPACE

A

Opem prollem

P-ENP(+,—,x)= 777
(P-RAM(+, —, x) is also unknown)

W
W
W

nat a
nat a

nat a

pout sequential mode?
bout one-parallem mode?

bout ENPs without enzymes?

Thanks for your attention!
Va multumim pentru atentiel

Cnacmnbo 3a BHumaHue!

0

