Fixed points and attractors of reaction systems

Enrico Formenti, Luca Manzoni, Antonio E. Porreca
Université Nice
Sophia Antipolis
France
Università degli Studi
di Milano-Bicocca
Italy

Computability in Europe 2014, Budapest, 24 June 2014

Reactions

$$
\begin{aligned}
& a=(R, I, P) \quad \in 2^{S} \times 2^{S} \times 2^{S} \\
& \operatorname{res}_{a}(T)= \begin{cases}P & \text { if } R \subseteq T \text { and } I \cap T=\varnothing \\
\varnothing & \text { otherwise }\end{cases}
\end{aligned}
$$

Reaction systems

$\mathcal{A}=(S, A)$
$\operatorname{res}_{\mathcal{A}}(T)=\bigcup\left\{\operatorname{res}_{a}(T): a \in A\right\}$

An example: evaluating DNF formulae
$\varphi \equiv\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)$
$\left(\operatorname{pos}\left(\varphi_{j}\right), \operatorname{neg}\left(\varphi_{j}\right) \cup\{\varrho\},\{\varrho\}\right)$
$\left(\{\rho\},\left\{x_{i}\right\},\{\rho\}\right)$

Dynamics of reaction systems

$$
\mathcal{A}=(S, A) \quad \Longrightarrow \quad\left(\operatorname{res}_{\mathcal{A}}^{t}(T)\right)_{t \in \mathbf{N}}
$$

Questions (biologically inspired):

- Is T a fixed point?
- Does \mathcal{A} have fixed points?
- Similarity of \mathcal{A} and \mathcal{B} wrt fixed points
- Does \mathcal{A} have (local) fixed point attractors?
- Similarity of \mathcal{A} and \mathcal{B} wrt fixed point attractors

Computing res $\mathcal{A}_{\mathcal{A}}$ and "fixedness" $\in \mathbf{A C}^{0}$ (FO-uniform)

Existence of fixed points $\in \mathbf{N P}$

"There exists a state T such that
T is a fixed point"

Existence of fixed points is NP-hard
CNF formula $\exists V \varphi$

Existence of shared fixed points is NP-complete

"There exists a state T such that
T is a fixed point
for both \mathcal{A} and $\mathcal{B}^{\prime \prime}$

All fixed points are shared \in coNP

"For all states T

T is a fixed point for \mathcal{A} iff

T is a fixed point for $\mathcal{B}^{\prime \prime}$

All fixed points are shared is coNP-hard

 DNF formula $\forall V \varphi$

Is T a fixed point attractor? $\in \mathbf{N P}$

"There exists a state U such that
T is a fixed point and
$U \neq T$ and $\operatorname{res}_{\mathcal{A}}(U)=T^{\prime \prime}$

Is T a fixed point attractor? is NP-hard

CNF formula $\exists V \varphi$

Other problems about fixed point attractors

Has \mathcal{A} got a fixed point attractor? NP-complete
Do \mathcal{A} and \mathcal{B} share a fixed point attractor? NP-complete

All fixed point attractors are shared $\in \Pi_{2}^{P}=\operatorname{coNP}{ }^{N P}$

"For all states T

T is a fixed point attractor in \mathcal{A} iff T is a fixed point attractor in $\mathcal{B}^{\prime \prime}$

All fixed point attractors are shared is Π_{2}^{P}-complete

CNF formula $\forall V_{1} \exists V_{2} \varphi$

is U the image
of T for \mathcal{A} ?

is U the image of T for \mathcal{A} ?
is T a fixed point of \mathcal{A} ?
has \mathcal{A} got a fixed point?

is U the image is T a fixed of T for \mathcal{A} ? point of \mathcal{A} ?
has \mathcal{A} got a fixed point?
do \mathcal{A} and \mathcal{B} share a fixed point?
$\Pi_{2}^{P}=\operatorname{coNP}^{N P}$
is U the image of T for \mathcal{A} ?
is T a fixed point of \mathcal{A} ?
has \mathcal{A} got a fixed point?
do \mathcal{A} and \mathcal{B}

is U the image of T for \mathcal{A} ?
is T a fixed point of \mathcal{A} ?
has \mathcal{A} got a fixed point? do \mathcal{A} and \mathcal{B} share a fixed point?
do \mathcal{A} and \mathcal{B} share all fixed points?
is T a fixed point $\quad \because$ ध $\because, \Pi_{2}^{P}=\operatorname{coNP}{ }^{N P}$ attractor of \mathcal{A} ?

is U the image of T for \mathcal{A} ?
is T a fixed point of \mathcal{A} ?
has \mathcal{A} got a fixed point? do \mathcal{A} and \mathcal{B} share a fixed point? is T a fixed point attractor of \mathcal{A} ?
has \mathcal{A} got a fixed point attractor?

is U the image of T for \mathcal{A} ?
is T a fixed point of \mathcal{A} ?
has \mathcal{A} got a fixed point?
 do \mathcal{A} and \mathcal{B} share a fixed point? is T a fixed point attractor of \mathcal{A} ? has \mathcal{A} got a fixed point attractor? do \mathcal{A} and \mathcal{B} share a fixed point attractor?

has \mathcal{A} got a fixed point? do \mathcal{A} and \mathcal{B} share a fixed point?
is T a fixed point attractor of \mathcal{A} ? has \mathcal{A} got a fixed point attractor? do \mathcal{A} and \mathcal{B} share a fixed point attractor?
do \mathcal{A} and \mathcal{B} share all fixed point attractors?
do \mathcal{A} and \mathcal{B} share all fixed points?

Open problems

- Complexity of reachability
- Complexity of finding cycles
- Complexity of finding global attractors

SPOILER: everything becomes PSPACE-complete!

$$
\begin{gathered}
\text { See our DCFS } 2014 \text { paper } \\
\text { (preprint at http://aeporreca.org) }
\end{gathered}
$$

- Dynamics of RS with context ("nondeterministic")
- Finding minimal RS with given $\operatorname{res}_{\mathcal{A}}$

Köszönöm a figyelmet!

Thanks for your attention!

Any questions?

