Flattening and simulation of asynchronous divisionless P systems with active membranes

Alberto Leporati¹ Luca Manzoni² Antonio E. Porreca¹

¹Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano-Bicocca

> ²Laboratoire i3S Université Nice Sophia Antipolis

14th International Conference on Membrane Computing 20–23 August 2013, Chișinău, Moldova

Summary

- We want to characterise the effect of asynchronicity on the computational power of P systems with active membranes
- Here we show that P systems with active membranes without division can be simulated by one-region transition P systems with cooperative rules...
-which can be simulated by Petri nets (non-universal)

Divisionless P systems with active membranes

$$\Pi = (\Gamma, \Lambda, \mu, w_{h_1}, \dots, w_{h_d}, R)$$

Rules

- Evolution $[a \rightarrow w]_h^{\alpha}$
- Send-in $a[]_h^{\alpha} \rightarrow [b]_h^{\beta}$
- Send-out $[a]_h^{\alpha} \rightarrow []_h^{\beta} b$
- Dissolution $[a]_h^{\alpha} \rightarrow b$

Asynchronous parallel mode (any multiset of rules is applicable)

Asynchronicity and sequentiality

Proposition

Let Π be a P system with active membranes using object evolution, communication, and dissolution rules. Then, the asynchronous and the sequential updating policies of Π are equivalent in the following sense: for each asynchronous (resp., sequential) computation step $\mathcal{C} \to \mathcal{D}$ we have a series of sequential (resp., asynchronous) steps $\mathcal{C} = \mathcal{C}_0 \to \cdots \to \mathcal{C}_n = \mathcal{D}$ for some $n \in \mathbb{N}$.

Proof.

First apply all evolution rules, then all communication rules, then all division rules sequentially $\hfill \square$

One-region transition P systems

$$\Pi = (\Gamma, w, R)$$

- Rules $v \to w$
- Sequential parallelism policy

Flattened encoding of P systems with active membranes

The *flattened encoding* of C is the multiset E(C) over $(\Gamma \cup \{-, 0, +\}) \times \Lambda$ defined as follows:

- If there are n copies of the object a contained in a membrane h in C, then E(C) contains n copies of the element (a, h)
- If a membrane h has charge α , then (α, h) is in E(C)

Proposition

Let $\Pi = (\Gamma, \Lambda, \mu, w_{h_1}, \dots, w_{h_d}, R)$ be a P system with active membranes working in the sequential mode and using object evolution, communication, and dissolution rules, with initial configuration C_0 . Then, there exists a single-membrane transition P system $\Pi' = ((\Gamma \cup \{-, 0, +\} \cup \{\bullet\}) \times \Lambda, v, R')$, for some initial multiset v, working in the sequential mode, such that:

From active membranes to transition P systems II

 (i) If C = (C₀, C₁,..., C_m) is a halting computation of Π, then there exists a halting computation D = (E(C₀), D₁,..., D_n) of Π' such that D_n is the union of E(C_m) and the set of all the elements in the form (•, h) where h is a membrane that has been dissolved in C.

- (ii) If D

 = (E(C₀), D₁,..., D_n) is a halting computation of Π', then there exists a halting computation C
 = (C₀, C₁,..., C_m) of Π such that D_n can be written as the union of the set of elements in the form (●, h), where h is a membrane that was dissolved in C
 , and E(C_m).
- (iii) Π admits a non-halting computation $(C_0, C_1, ...)$ if and only if Π' admits a non-halting computation $(E(C_0), D_1, ...)$.

From active membranes to transition P systems III

• For each dissolution rule $[a]_{h_1}^{\alpha} \rightarrow b$:

$$(a, h_1)(\alpha, h_1) \rightarrow (b, h_1)(\bullet, h_1)$$

 $(a, h_1)(\bullet, h_1) \rightarrow (a, h_2)(\bullet, h_1)$

where h_2 is the parent of h_1

• For each evolution rule $[a \rightarrow w]_h^{\alpha}$:

$$(a, h)(\alpha, h) \rightarrow (w_1, h) \dots (w_n, h)(\alpha, h)$$

For each send-out communication rule [a]^α_{h1} → []^β_{h1}b:

$$(a, h_1)(\alpha, h_1) \rightarrow (b, h_2)(\beta, h_1)$$

From active membranes to transition P systems IV

For each send-in rule a []^α_{h1} → [b]^β_{h1}, for each sequence (h_n, h_{n-1},..., h₂, h₁)of nested membranes surrounding h₁

$$(\bullet, h_{n-1}) \cdots (\bullet, h_2)(\alpha, h_1)(a, h_n)$$

$$\downarrow$$

$$(\bullet, h_{n-1}) \cdots (\bullet, h_2)(\beta, h_1)(b, h_1)$$

From active membranes to transition P systems V

(i) If C = (C₀, C₁,..., C_m) is a halting computation of Π, then there exists a halting computation D = (E(C₀), D₁,..., D_n) of Π' such that D_n is the union of E(C_m) and the set of all the elements in the form (•, h) where h is a membrane that has been dissolved in C.

- (ii) If D

 = (E(C₀), D₁,..., D_n) is a halting computation of Π', then there exists a halting computation C
 = (C₀, C₁,..., C_m) of Π such that D_n can be written as the union of the set of elements in the form (●, h), where h is a membrane that was dissolved in C
 , and E(C_m).
- (iii) Π admits a non-halting computation $(C_0, C_1, ...)$ if and only if Π' admits a non-halting computation $(E(C_0), D_1, ...)$.

Simulation with Petri nets

For each cooperative rule $v_1 \cdots v_n \rightarrow u_1 \cdots u_m$

Main result

Theorem

For every asynchronous P system with active membranes Π using evolution, communication, and dissolution rules, there exists a Petri net N such that

- (i) every halting configuration of Π corresponds to a halting configuration of N and vice versa
- (ii) every non-halting computation of Π corresponds to a non-halting computation of N and vice versa

This holds for P systems computing functions, generators and recognisers

Conclusions

- Asynchronous divisionless active membranes can be flattened and simulated by Petri nets
- Are they equivalent? (Does not follow immediately from previous results, halting condition is relevant)
- What about division?

Thanks for your attention!

Vă mulțumim pentru atenție!

Спасибо за внимание!