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Outline

-+ The first and second machine classes
Membrane computing
- Complexity theory of membrane systems

- Communication topologies and their role



The first machine class and P

-+ The deterministic Turing machine and all models
that simulate and are simulated by it efficiently

Random access machines with arithmetic
operations + and —

+ Cellular automata with finite initial configuration



The second machine class and PSPACE

- Computing models that solve in polynomial time what a
Turing machine solves in polynomial space

- Alternating Turing machines

Random access machines with arithmetic
operations + — X +

Parallel processes generated by fork(2)
running on an unbounded number of processors

+ Cellular automata over hyperbolic grids



Nondeterministic Turing machines: NP
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Alternating Turing machines: PSPACE

9




Alternating Turing machines: PSPACE




Cellular automata over a Euclidean grid
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Hyperbolic cellular automata

Pavage du plan hyperbolique par des
heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg
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Rule of thumb

Sequential machines are first class
Bounded parallel machines are first class

Unbounded parallel machines are second class



Membrane systems (P systems)




—volution rules and maximally parallel semantics
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Computational universality of memlbrane systems

- Able to simulate, e.g., counter machines
when working in maximally parallel way

- Equivalent to Petri nets or vector addition systems
when working In an asynchronous mode

- Which means that they are not computationally universal

- But see W. Czerwinski, S. Lasota, R. Lazic, J. Leroux, F.
Mazowiecki, The Reachability Problem for Petri Nets
is Not Elementary, https://arxiv.org/abs/1809.07115
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Simulating bounded-tape Turing machines
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Simulating bounded-tape Turing machines

o(q,b) = (r,a, + 1)
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Semi-uniform confluent families of P systems

yes
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“Milano Theorem?”

Semi-uniform families of confluent membrane
systems without membrane division
characterise P in polynomial time.



Membrane systems solving NP problems
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Simulating nondeterminism with parallelism
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Flattening nondeterministic computation trees




Flattening nondeterministic computation trees
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Cannot flatten alternating computation trees!




Membrane systems are second class
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Membrane systems are second class
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Membrane systems are second class




Counting Turing machines: #P
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Oracle Turing machines and the class P#P
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The class P#P In context
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The class P#P In context
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Shallow membrane systems solve P#P
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Shallow membrane systems solve P#P
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Shallow membrane systems solve P#P



Flattening counting computation trees
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Flattening counting computation trees




The results up to now

- No membranes (equivalently, no division) = P

- Shallow (depth 1) membrane division 2 P#P

- Deep membrane division = PSPACE



2roving that shallow membrane division = P#P

Given the initial configuration
of an elementary memlbrane,
how many copies of object a are sent out
by descendant membranes at time t*?




Query in #P in the monodirectional case
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Query in #P in the monodirectional case
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—asy” upper bound in the monodirectional case
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“Easy” upper bound in the monodirectional case
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Simulation algorithm (monodirectional case)

- For each time step t until the simulated system halts:

- Simulate one step of the external environment, updating
the stored configuration

- Ask the oracle how many instances of each symbol are
sent out at time t by each elementary membrane in the
initial configuration (not stored)

-+ Add the answer to each query to the
external environment

+  Accept or reject depending on the result of the simulation



“Send-in” communication breaks the algorithm

Given the initial configuration of an elementary membrane
and a table describing what communication rules (with
multiplicity!) were applied to its descendants until tme t - 1,
how many copies of object a are sent out at time t7



Monodirectional characterisation of PNP

Consider membrane systems where deep
memlbrane division is allowed

But limit inter-memlbrane communication
to monodirectional (outwards)

- Then we obtain a precise characterisation
of PNPn polynomial time



Finally some unusual complexity classes!
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Hierarchy of membrane systems wrt division depth

-+ No membranes (equivalently, no division) = P
- Shallow (depth 1) membrane division = P#P

+ Deep membrane division = PSPACE



Communication topology and complexity

PSPACE
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Automata networks over arbitrary infinite graphs
as a reference model of computation
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Automata networks over arbitrary infinite graphs
as a reference model of computation

f: Multisets(Q) — O



Generalised complexity classes over a graph G

PSPACE(G)

P(G) EXPTIME(G)

LOGTIME(G) NP(G)



—Xpected results

P(Euclidean grid) = P

P(infinite binary tree) = PSPACE

P(variant of infinite star) = P*F



Open problems

- FInd explanations to the membrane computing results

- Find graphs characterising the standard
complexity classes

- FInd complexity classes corresponding
to “natural” families of graphs
(i.e., with interesting graph-theoretic properties)

-+ FInd how the geometry of the space influence
the efficiency of the algorithms



Thanks for your attention!
Merci de votre attention |

Any questions?



