Natural computing models of unusual complexity

Antonio E. Porreca Aix-Marseille Université, Lab. Informatique et Systèmes, équipe CANA https://aeporreca.org

Outline

- The first and second machine classes
- Membrane computing
- Complexity theory of membrane systems
- Communication topologies and their role

The first machine class and **P**

- The deterministic Turing machine and all models that simulate and are simulated by it efficiently
 - Random access machines with arithmetic operations + and -
 - Cellular automata with finite initial configuration

The second machine class and **PSPACE**

- Computing models that solve in polynomial time what a Turing machine solves in polynomial space
 - Alternating Turing machines
 - Random access machines with arithmetic operations + x ÷
 - Parallel processes generated by fork(2)
 running on an unbounded number of processors
 - Cellular automata over hyperbolic grids

Nondeterministic Turing machines: **NP**

Nondeterministic Turing machines: **NP**

Alternating Turing machines: **PSPACE**

Alternating Turing machines: **PSPACE**

$$V = \Omega(2^r)$$

Rule of thumb

- Sequential machines are first class
- Bounded parallel machines are first class
- Unbounded parallel machines are second class

Membrane systems (P systems)

Evolution rules and maximally parallel semantics

Evolution rules and maximally parallel semantics

Evolution rules and maximally parallel semantics

Computational universality of membrane systems

- Able to simulate, e.g., counter machines when working in maximally parallel way
- Equivalent to Petri nets or vector addition systems when working in an asynchronous mode
- Which means that they are not computationally universal
- But see W. Czerwinski, S. Lasota, R. Lazic, J. Leroux, F. Mazowiecki, The Reachability Problem for Petri Nets is Not Elementary, https://arxiv.org/abs/1809.07115

$$a_1$$
 b_2 b_3 a_4 a_4

$$a_1$$
 b_2 b_3 a_4 a_4

$$\delta(q, b) = (r, a, +1)$$

$$a_1$$
 b_2 b_3 a_4 a_4

$$\delta(q,b) = (r,a,+1) \qquad b_i \qquad r_{i+1}$$

Semi-uniform confluent families of P systems

"Milano Theorem"

Semi-uniform families of confluent membrane systems **without** membrane division characterise **P** in polynomial time.

$$\begin{pmatrix} a_1 & b_2 & b_3 \\ q_3 & a_4 \end{pmatrix}$$

$$\delta(q,b) = \begin{cases} (r, a, +1) \\ (s, b, -1) \end{cases}$$

$$\begin{pmatrix} a_1 & b_2 & b_3 \\ q_3 & a_4 \end{pmatrix}$$

$$\delta(q,b) = \begin{cases} (r,a,+1) \\ (s,b,-1) \end{cases}$$

$$\begin{pmatrix} b_i & q_i \end{pmatrix} = \begin{pmatrix} a_i & r_{i+1} \\ b_i & S_{i-1} \end{pmatrix}$$

Simulating nondeterminism with parallelism

Simulating nondeterminism with parallelism

Flattening nondeterministic computation trees

Flattening nondeterministic computation trees

Cannot flatten alternating computation trees!

Membrane systems are second class

Membrane systems are second class

Membrane systems are second class

Counting Turing machines: #P

Counting Turing machines: #P

Counting Turing machines: #P

Oracle Turing machines and the class P#P

Oracle Turing machines and the class P#P

Oracle Turing machines and the class P#P

Flattening counting computation trees

Flattening counting computation trees

The results up to now

- No membranes (equivalently, no division) = P
- Shallow (depth 1) membrane division ⊇ P*P
- Deep membrane division = PSPACE

Proving that shallow membrane division = P*P

Given the initial configuration of an elementary membrane, how many copies of object *a* are sent out by descendant membranes at time *t*?

Query in **#P** in the monodirectional case

Query in **#P** in the monodirectional case

temps

"Easy" upper bound in the monodirectional case

"Easy" upper bound in the monodirectional case

Simulation algorithm (monodirectional case)

- For each time step t until the simulated system halts:
 - Simulate one step of the external environment, updating the stored configuration
 - Ask the oracle how many instances of each symbol are sent out at time t by each elementary membrane in the initial configuration (not stored)
 - Add the answer to each query to the external environment
- Accept or reject depending on the result of the simulation

"Send-in" communication breaks the algorithm

Given the initial configuration of an elementary membrane and a table describing what communication rules (with multiplicity!) were applied to its descendants until time t-1, how many copies of object a are sent out at time t?

Monodirectional characterisation of **PNP**

- Consider membrane systems where deep membrane division is allowed
- But limit inter-membrane communication to monodirectional (outwards)
- Then we obtain a precise characterisation of PNP in polynomial time

Hierarchy of membrane systems wrt division depth

- No membranes (equivalently, no division) = P
- Shallow (depth 1) membrane division = P*P
- Deep membrane division = PSPACE

 $f: Multisets(Q) \rightarrow Q$

Generalised complexity classes over a graph G

PSPACE(G)

 $\mathbf{P}(G)$

 $\mathbf{EXPTIME}(G)$

LOGTIME(G)

 $\mathbf{NP}(G)$

Expected results

P(Euclidean grid) = P

P(infinite binary tree) = PSPACE

 $P(\text{variant of infinite star}) = P^{\#P}$

Open problems

- Find explanations to the membrane computing results
- Find graphs characterising the standard complexity classes
- Find complexity classes corresponding to "natural" families of graphs (i.e., with interesting graph-theoretic properties)
- Find how the geometry of the space influence the efficiency of the algorithms

Thanks for your attention! Merci de votre attention!

Any questions?