Natural computing models
of unusual complexity

Antonio E. Porreca
Aix-Marseille Université, Lab. Informatique et Systemes, équipe CANA

https://aeporreca.org

https://aeporreca.org

Outline

-+ The first and second machine classes
Membrane computing
- Complexity theory of membrane systems

- Communication topologies and their role

The first machine class and P

-+ The deterministic Turing machine and all models
that simulate and are simulated by it efficiently

Random access machines with arithmetic
operations + and —

+ Cellular automata with finite initial configuration

The second machine class and PSPACE

- Computing models that solve in polynomial time what a
Turing machine solves in polynomial space

- Alternating Turing machines

Random access machines with arithmetic
operations + — X +

Parallel processes generated by fork(2)
running on an unbounded number of processors

+ Cellular automata over hyperbolic grids

Nondeterministic Turing machines: NP

9

Nondeterministic Turing machines: NP

Alternating Turing machines: PSPACE

9

Alternating Turing machines: PSPACE

Cellular automata over a Euclidean grid

Cellular automata over a Euclidean grid

Cellular automata over a Euclidean grid

Cellular automata over a Euclidean grid

Cellular automata over a Euclidean grid

Hyperbolic cellular automata

Pavage du plan hyperbolique par des
heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Hyperbolic cellular automata

Pavage du plan hyperbolique par des
heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Hyperbolic cellular automata

Pavage du plan hyperbolique par des
heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Hyperbolic cellular automata

Pavage du plan hyperbolique par des
heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Hyperbolic cellular automata

Pavage du plan hyperbolique par des
heptagones, dans le modele du disque
de Poincare. By Theon, used under CC
BY-SA 3.0 https:/en.wikipedia.org/wiki/
File:PavageHypPoincare2.svg

Rule of thumb

Sequential machines are first class
Bounded parallel machines are first class

Unbounded parallel machines are second class

Membrane systems (P systems)

—volution rules and maximally parallel semantics

N
~

—volution rules and maximally parallel semantics

—volution rules and maximally parallel semantics

b
S OO
©

Computational universality of memlbrane systems

- Able to simulate, e.g., counter machines
when working in maximally parallel way

- Equivalent to Petri nets or vector addition systems
when working In an asynchronous mode

- Which means that they are not computationally universal

- But see W. Czerwinski, S. Lasota, R. Lazic, J. Leroux, F.
Mazowiecki, The Reachability Problem for Petri Nets
is Not Elementary, https://arxiv.org/abs/1809.07115

https://arxiv.org/abs/1809.07115

Simulating bounded-tape Turing machines

Simulating bounded-tape Turing machines

@ bZ b3
al?b le a ay

1 3 4 5 6 q3

Simulating bounded-tape Turing machines

@ bZ b3
al?b le a ay

4 5 6 q3

o(q,b) = (r,a, + 1)

Simulating bounded-tape Turing machines

o(q,b) = (r,a, + 1)

by b,

dq

Semi-uniform confluent families of P systems

yes

xXEeX*

no

“Milano Theorem?”

Semi-uniform families of confluent membrane
systems without membrane division
characterise P in polynomial time.

Membrane systems solving NP problems

Membrane systems solving NP problems

@ bZ b3
al?b le a ay

1 2 3 4 5 6 q3

Membrane systems solving NP problems

@ bZ b3
al?b le a ay

1 3 4 5 6 q3

Membrane systems solving NP problems

@ bZ b3
al?b Z‘Z a ay

1 3 4 5 6 q3

d; iy

b; Si-

Simulating nondeterminism with parallelism

Simulating nondeterminism with parallelism

Simulating nondeterminism with parallelism

Simulating nondeterminism with parallelism

Simulating nondeterminism with parallelism

Simulating nondeterminism with parallelism

Flattening nondeterministic computation trees

Flattening nondeterministic computation trees

8, 8, 8, 8, 8,
Al Ao gd dhaogd dHaogd (O

Cannot flatten alternating computation trees!

Membrane systems are second class

@

& M o

o o o o o
Ao Hod JHoog ooy (HOTr

Membrane systems are second class

@
¥ p
o = B
| R | v

Membrane systems are second class

Counting Turing machines: #P

9

Counting Turing machines: #P

Counting Turing machines: #P

fi 2% - N Q-
/ \
@Qﬂ ﬂ‘ﬂ

ﬂ‘ﬁ ﬁﬁﬁ Qﬂﬂ
/N \

9 D D D 9

Oracle Turing machines and the class P#P

Oracle Turing machines and the class P#P

Oracle Turing machines and the class P#P

The class P#P In context

P#P

The class P#P In context

P#P
1N
PSPACE

The class P#P In context

PH

PNP

P C NP C NPN? ¢ NpN
1N
P#P
1N
PSPACE

The class P#P In context

PH

P C NP C NPNP C NPV C ...
M
Toda’s theorem pP

N
PSPACE

Shallow membrane systems solve P#P

Shallow membrane systems solve P#P

Shallow membrane systems solve P#P

0 8 8 O o
T) \ (o) \ gy) | g
O J O O
0 o) \go) oo) oo
O O 0
1 AT \ o) \ T

DRH -
6446

Shallow membrane systems solve P#P

Flattening counting computation trees

8, 8 8 8 8
ATy oy JdHaod (Haoog) T r

Flattening counting computation trees

The results up to now

- No membranes (equivalently, no division) = P

- Shallow (depth 1) membrane division 2 P#P

- Deep membrane division = PSPACE

2roving that shallow membrane division = P#P

Given the initial configuration
of an elementary memlbrane,
how many copies of object a are sent out
by descendant membranes at time t*?

Query in #P in the monodirectional case

A2
A

2@
O

temps

Query in #P in the monodirectional case

a |
a +
a
a 3) 3
aa 0
a +
ada 2

temps

1]

—asy” upper bound in the monodirectional case

b c

“Easy” upper bound in the monodirectional case

. (J

~—

Simulation algorithm (monodirectional case)

- For each time step t until the simulated system halts:

- Simulate one step of the external environment, updating
the stored configuration

- Ask the oracle how many instances of each symbol are
sent out at time t by each elementary membrane in the
initial configuration (not stored)

-+ Add the answer to each query to the
external environment

+ Accept or reject depending on the result of the simulation

“Send-in” communication breaks the algorithm

Given the initial configuration of an elementary membrane
and a table describing what communication rules (with
multiplicity!) were applied to its descendants until tme t - 1,
how many copies of object a are sent out at time t7

Monodirectional characterisation of PNP

Consider membrane systems where deep
memlbrane division is allowed

But limit inter-memlbrane communication
to monodirectional (outwards)

- Then we obtain a precise characterisation
of PNPn polynomial time

Finally some unusual complexity classes!

NP
P P#P

Hierarchy of membrane systems wrt division depth

-+ No membranes (equivalently, no division) = P
- Shallow (depth 1) membrane division = P#P

+ Deep membrane division = PSPACE

Communication topology and complexity

PSPACE

7PN

Communication topology and complexity

PSPACE

Communication topology and complexity

PSPACE

Communication topology and complexity

Automata networks over arbitrary infinite graphs
as a reference model of computation

Automata networks over arbitrary infinite graphs
as a reference model of computation

Automata networks over arbitrary infinite graphs
as a reference model of computation

Automata networks over arbitrary infinite graphs
as a reference model of computation

f: Multisets(Q) — O

Generalised complexity classes over a graph G

PSPACE(G)

P(G) EXPTIME(G)

LOGTIME(G) NP(G)

—Xpected results

P(Euclidean grid) = P

P(infinite binary tree) = PSPACE

P(variant of infinite star) = P*F

Open problems

- FInd explanations to the membrane computing results

- Find graphs characterising the standard
complexity classes

- FInd complexity classes corresponding
to “natural” families of graphs
(i.e., with interesting graph-theoretic properties)

-+ FInd how the geometry of the space influence
the efficiency of the algorithms

Thanks for your attention!
Merci de votre attention |

Any questions?

