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Introduction

» Membrane systems (P systems) are devices inspired
by structure and functioning of biological cells
introduced by G. Paun in 1998

» They can be used as language recognisers
and most variants are computationally universal

» We show a variant of P system that decides exactly
the languages decided by Turing machines working
in tetrational (iterated exponential) time and space
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The membrane structure of P systems

» Membranes divide the cell into regions
» Membranes have fixed label and changeable electrical charge
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Contents of the membranes

Each membrane contains a multiset of objects
(symbols from an alphabet I') representing molecules
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Evolution rules

» Each pair (label, charge) has a set of associated rules
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Evolution rules

» Each pair (label, charge) has a set of associated rules
> For instance, the rule [a]) — [ ]/ b can be applied to
a membrane having label h and charge 0
» The charge represents a kind of state of the membrane,
controlling which set of rules can be applied
» We only use three kinds of rule in this paper:
» Send-out communication rules: [a]" — []’; b
» Send-in communication rules: a [ ] — [b],f
» Nonelementary division rules
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» [, decides x € L by emitting an object yes or no
from the outermost membrane and halting

» The map x — [y is computed by a polytime Turing machine M
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The complexity class PTETRA

Denote by "2 the tetration (iterated exponentiation) operation
2

ne __ 2%
2=2

n times

Definition
PTETRA is the class of languages decided by Turing machines
operating in “tetrational time” P("2 for some polynomial p

Proposition
PTETRA coincides with tetrational space, and is closed
under complement, union, intersection, and polytime reductions
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How large is PTETRA?

PTETRA

ELEMENTARY

EXP

()

All inclusions in this Venn diagram are proper
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Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount

of space (number of membranes and objects) modulo
a polynomial overhead
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Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount

of space (number of membranes and objects) modulo
a polynomial overhead

» The number of objects in our P systems only increases
via nonelementary membrane division

» We need to count the maximum number of membranes
during the computation. . .

» ... keeping in mind that the initial number is m = poly(n)
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Nonelementary division stops in a finite number of steps

no further division
is possible here
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Applying division to all levels

Proposition

Suppose we apply all possible division rules to the complete
m-ary tree of m levels, and that the rules are applied level-by-level,
bottom-up (this is the worst case). Then the final number of nodes
is bounded by ©(m*)2
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Proposition

Suppose we apply all possible division rules to the complete
m-ary tree of m levels, and that the rules are applied level-by-level,
bottom-up (this is the worst case). Then the final number of nodes
is bounded by O(m?)

Proposition
A family of P system {1y : x € £*} can be simulated
by a Turing machine in space P(")2 . p(n) for some polynomial p

Theorem
The class of languages decidable by this variant of P systems is
a subset of PTETRA
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Can the upper bound be actually achieved?

» By using a few auxiliary membranes and objects. . .

» ... and forcing the divisions to occurr in a bottom-up order
by using the electrical charges. ..

» ... we can produce tetrationally many membranes and,
as a consequence, tetrationally many objects
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Can the upper bound be actually achieved?

v

By using a few auxiliary membranes and objects. . .

v

. and forcing the divisions to occurr in a bottom-up order
by using the electrical charges. ..

» ... we can produce tetrationally many membranes and,
as a consequence, tetrationally many objects

» How can we exploit this feature?
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Simulating register (counter) machines

one membrane the number of a’s is the
per register value of the register

0 0 0
n rn r3
aaaaaa
aaaaaaaa
aaaaaa

“spare” a’s to perform

. : program counter object
Increment operations
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Solving PTETRA problems via P systems

By exploiting the nonelementary division process
we can produce tetrationally many spare a’s
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Conclusions and open problems

» We described a variant of P systems that, although

non computationally universal, decides a very large class
of languages

» Do other nature-inspired computing devices characterise
PTETRA or other similarly large classes?

» Can we characterise the primitive recursive languages?
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Thanks for your attention!



