On a powerful class of non-universal P systems with active membranes

Antonio E. Porreca Alberto Leporati Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano-Bicocca, Italy

14th Developments in Language Theory London, Ontario, 19 August 2010

Introduction

 Membrane systems (P systems) are devices inspired by structure and functioning of biological cells introduced by G. Păun in 1998

Introduction

- Membrane systems (P systems) are devices inspired by structure and functioning of biological cells introduced by G. Păun in 1998
- They can be used as language recognisers and most variants are computationally universal

Introduction

- Membrane systems (P systems) are devices inspired by structure and functioning of biological cells introduced by G. Păun in 1998
- They can be used as language recognisers and most variants are computationally universal
- We show a variant of P system that decides exactly the languages decided by Turing machines working in tetrational (iterated exponential) time and space

Outline

- Description of our variant of P systems
- Languages decidable in tetrational time
- How much space can P systems use? (upper bound)
- Simulating tetrational-space TMs (lower bound)
- Conclusions and open problems

The membrane structure of P systems

- Membranes divide the cell into regions
- Membranes have fixed label and changeable electrical charge

The membrane structure of P systems

- Membranes divide the cell into regions
- Membranes have fixed label and changeable electrical charge

Contents of the membranes

Each membrane contains a multiset of objects (symbols from an alphabet Γ) representing molecules

 $[aaabbc [bcc]^+_{h_1} [abc]^+_{h_2}]^0_{h_0}$

► Each pair (label, charge) has a set of associated rules

- Each pair (label, charge) has a set of associated rules
- ► For instance, the rule $[a]_h^0 \rightarrow []_h^+ b$ can be applied to a membrane having label *h* and charge 0

- Each pair (label, charge) has a set of associated rules
- ► For instance, the rule $[a]_h^0 \rightarrow []_h^+ b$ can be applied to a membrane having label *h* and charge 0
- The charge represents a kind of state of the membrane, controlling which set of rules can be applied

- Each pair (label, charge) has a set of associated rules
- ► For instance, the rule $[a]_h^0 \rightarrow []_h^+ b$ can be applied to a membrane having label *h* and charge 0
- The charge represents a kind of state of the membrane, controlling which set of rules can be applied
- We only use three kinds of rule in this paper:

- Each pair (label, charge) has a set of associated rules
- ► For instance, the rule $[a]_h^0 \rightarrow []_h^+ b$ can be applied to a membrane having label *h* and charge 0
- The charge represents a kind of state of the membrane, controlling which set of rules can be applied
- We only use three kinds of rule in this paper:
 - Send-out communication rules: $[a]_h^{\alpha} \rightarrow []_h^{\beta} b$

- Each pair (label, charge) has a set of associated rules
- ► For instance, the rule $[a]_h^0 \rightarrow []_h^+ b$ can be applied to a membrane having label *h* and charge 0
- The charge represents a kind of state of the membrane, controlling which set of rules can be applied
- We only use three kinds of rule in this paper:
 - Send-out communication rules: $[a]_h^{\alpha} \rightarrow []_h^{\beta} b$
 - Send-in communication rules: $a []_h^{\alpha} \rightarrow [b]_h^{\beta}$

- Each pair (label, charge) has a set of associated rules
- ► For instance, the rule $[a]_h^0 \rightarrow []_h^+ b$ can be applied to a membrane having label *h* and charge 0
- The charge represents a kind of state of the membrane, controlling which set of rules can be applied
- We only use three kinds of rule in this paper:
 - Send-out communication rules: $[a]_h^{\alpha} \rightarrow []_h^{\beta} b$
 - Send-in communication rules: $a []_h^{\alpha} \rightarrow [b]_h^{\beta}$
 - Nonelementary division rules

 A nonelementary division rule separates positive and negative children membranes

- A nonelementary division rule separates positive and negative children membranes
- The neutral children membranes are duplicated instead

- A nonelementary division rule separates positive and negative children membranes
- The neutral children membranes are duplicated instead
- ► For instance: consider $[[]_{h_1}^+[]_{h_2}^-]_h^0 \rightarrow [[]_{h_1}^0]_h^+[[]_{h_2}^0]_h^-$

- A nonelementary division rule separates positive and negative children membranes
- The neutral children membranes are duplicated instead
- ► For instance: consider $[[]_{h_1}^+[]_{h_2}^-]_h^0 \rightarrow [[]_{h_1}^0]_h^+[[]_{h_2}^0]_h^-$

- A nonelementary division rule separates positive and negative children membranes
- The neutral children membranes are duplicated instead
- ► For instance: consider $[[]_{h_1}^+[]_{h_2}^-]_h^0 \rightarrow [[]_{h_1}^0]_h^+[[]_{h_2}^0]_h^-$

• To decide a language *L*, we map each string x to a P system Π_x

- To decide a language L, we map each string x to a P system Π_x
- Π_x decides x ∈ L by emitting an object yes or no from the outermost membrane and halting

- To decide a language L, we map each string x to a P system Π_x
- Π_x decides x ∈ L by emitting an object yes or no from the outermost membrane and halting
- The map $x \mapsto \Pi_x$ is computed by a polytime Turing machine *M*

- To decide a language L, we map each string x to a P system Π_x
- Π_x decides $x \in L$ by emitting an object yes or no from the outermost membrane and halting
- The map $x \mapsto \Pi_x$ is computed by a polytime Turing machine *M*

The complexity class PTETRA

Denote by ⁿ2 the tetration (iterated exponentiation) operation

The complexity class **PTETRA**

Denote by ⁿ2 the tetration (iterated exponentiation) operation

Definition PTETRA is the class of languages decided by Turing machines operating in "tetrational time" p(n) for some polynomial p

The complexity class **PTETRA**

Denote by ⁿ2 the tetration (iterated exponentiation) operation

Definition

PTETRA is the class of languages decided by Turing machines operating in "tetrational time" p(n) for some polynomial p

Proposition

PTETRA coincides with tetrational space, and is closed under complement, union, intersection, and polytime reductions

How large is **PTETRA**?

All inclusions in this Venn diagram are proper

Fact

A P system can be simulated by a TM using the same amount of space (number of membranes and objects) modulo a polynomial overhead

Fact

A P system can be simulated by a TM using the same amount of space (number of membranes and objects) modulo a polynomial overhead

The number of objects in our P systems only increases via nonelementary membrane division

Fact

A P system can be simulated by a TM using the same amount of space (number of membranes and objects) modulo a polynomial overhead

- The number of objects in our P systems only increases via nonelementary membrane division
- ► We need to count the maximum number of membranes during the computation...

Fact

A P system can be simulated by a TM using the same amount of space (number of membranes and objects) modulo a polynomial overhead

- The number of objects in our P systems only increases via nonelementary membrane division
- ► We need to count the maximum number of membranes during the computation...
- ... keeping in mind that the initial number is m = poly(n)

Applying division to all levels

Proposition

Suppose we apply all possible division rules to the complete m-ary tree of m levels, and that the rules are applied level-by-level, bottom-up (this is the worst case). Then the final number of nodes is bounded by $O(m^2)$ 2

Applying division to all levels

Proposition

Suppose we apply all possible division rules to the complete m-ary tree of m levels, and that the rules are applied level-by-level, bottom-up (this is the worst case). Then the final number of nodes is bounded by $O(m^2)$ 2

Proposition

A family of P system $\{\Pi_x : x \in \Sigma^*\}$ can be simulated by a Turing machine in space $p(n) 2 \cdot p(n)$ for some polynomial p

Applying division to all levels

Proposition

Suppose we apply all possible division rules to the complete m-ary tree of m levels, and that the rules are applied level-by-level, bottom-up (this is the worst case). Then the final number of nodes is bounded by $O(m^2)$ 2

Proposition

A family of P system $\{\Pi_x : x \in \Sigma^*\}$ can be simulated by a Turing machine in space $p(n) 2 \cdot p(n)$ for some polynomial p

Theorem

The class of languages decidable by this variant of P systems is a subset of **PTETRA**

Can the upper bound be actually achieved?

- By using a few auxiliary membranes and objects...
- ... and forcing the divisions to occurr in a bottom-up order by using the electrical charges...
- ... we can produce tetrationally many membranes and, as a consequence, tetrationally many objects

Can the upper bound be actually achieved?

- By using a few auxiliary membranes and objects...
- ... and forcing the divisions to occurr in a bottom-up order by using the electrical charges...
- ... we can produce tetrationally many membranes and, as a consequence, tetrationally many objects
- How can we exploit this feature?

Simulating register (counter) machines

Solving **PTETRA** problems via P systems

By exploiting the nonelementary division process we can produce tetrationally many spare a's

Solving **PTETRA** problems via P systems

By exploiting the nonelementary division process we can produce tetrationally many spare a's

Proposition

Tetrational-space register machines (hence TMs) can be simulated by our variant of P system

Solving **PTETRA** problems via P systems

By exploiting the nonelementary division process we can produce tetrationally many spare a's

Proposition

Tetrational-space register machines (hence TMs) can be simulated by our variant of P system

Theorem The class of languages decided by our variant of P system is exactly **PTETRA**

Conclusions and open problems

 We described a variant of P systems that, although non computationally universal, decides a very large class of languages

Conclusions and open problems

- We described a variant of P systems that, although non computationally universal, decides a very large class of languages
- Do other nature-inspired computing devices characterise PTETRA or other similarly large classes?

Conclusions and open problems

- We described a variant of P systems that, although non computationally universal, decides a very large class of languages
- Do other nature-inspired computing devices characterise PTETRA or other similarly large classes?
- Can we characterise the primitive recursive languages?

Thanks for your attention!