
On a powerful class of non-universal
P systems with active membranes

Antonio E. Porreca Alberto Leporati Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca, Italy

14th Developments in Language Theory
London, Ontario, 19 August 2010

Introduction

I Membrane systems (P systems) are devices inspired
by structure and functioning of biological cells
introduced by G. Păun in 1998

I They can be used as language recognisers
and most variants are computationally universal

I We show a variant of P system that decides exactly
the languages decided by Turing machines working
in tetrational (iterated exponential) time and space

2/18

Introduction

I Membrane systems (P systems) are devices inspired
by structure and functioning of biological cells
introduced by G. Păun in 1998

I They can be used as language recognisers
and most variants are computationally universal

I We show a variant of P system that decides exactly
the languages decided by Turing machines working
in tetrational (iterated exponential) time and space

2/18

Introduction

I Membrane systems (P systems) are devices inspired
by structure and functioning of biological cells
introduced by G. Păun in 1998

I They can be used as language recognisers
and most variants are computationally universal

I We show a variant of P system that decides exactly
the languages decided by Turing machines working
in tetrational (iterated exponential) time and space

2/18

Outline

I Description of our variant of P systems
I Languages decidable in tetrational time
I How much space can P systems use? (upper bound)
I Simulating tetrational-space TMs (lower bound)
I Conclusions and open problems

3/18

The membrane structure of P systems
I Membranes divide the cell into regions
I Membranes have fixed label and changeable electrical charge

h0

h1

h2

h3 h4

+

− 0

+

0

4/18

The membrane structure of P systems
I Membranes divide the cell into regions
I Membranes have fixed label and changeable electrical charge

h0

h1

h2

h3 h4

h0

h1 h2

h3 h4

+

− 0

+

0

[[]+h1
[[]−h3

[]0h4
]+h2

]0h0

0

+

−

+

0

4/18

Contents of the membranes

Each membrane contains a multiset of objects
(symbols from an alphabet Γ) representing molecules

h0

h1

h2

+ +
0

aaabbc

bcc

abc

[aaabbc [bcc]+h1
[abc]+h2

]0h0

5/18

Evolution rules

I Each pair (label, charge) has a set of associated rules

I For instance, the rule [a]0h → []+h b can be applied to
a membrane having label h and charge 0

I The charge represents a kind of state of the membrane,
controlling which set of rules can be applied

I We only use three kinds of rule in this paper:
I Send-out communication rules: [a]αh → []βh b
I Send-in communication rules: a []αh → [b]βh
I Nonelementary division rules

6/18

Evolution rules

I Each pair (label, charge) has a set of associated rules
I For instance, the rule [a]0h → []+h b can be applied to

a membrane having label h and charge 0

I The charge represents a kind of state of the membrane,
controlling which set of rules can be applied

I We only use three kinds of rule in this paper:
I Send-out communication rules: [a]αh → []βh b
I Send-in communication rules: a []αh → [b]βh
I Nonelementary division rules

6/18

Evolution rules

I Each pair (label, charge) has a set of associated rules
I For instance, the rule [a]0h → []+h b can be applied to

a membrane having label h and charge 0
I The charge represents a kind of state of the membrane,

controlling which set of rules can be applied

I We only use three kinds of rule in this paper:
I Send-out communication rules: [a]αh → []βh b
I Send-in communication rules: a []αh → [b]βh
I Nonelementary division rules

6/18

Evolution rules

I Each pair (label, charge) has a set of associated rules
I For instance, the rule [a]0h → []+h b can be applied to

a membrane having label h and charge 0
I The charge represents a kind of state of the membrane,

controlling which set of rules can be applied
I We only use three kinds of rule in this paper:

I Send-out communication rules: [a]αh → []βh b
I Send-in communication rules: a []αh → [b]βh
I Nonelementary division rules

6/18

Evolution rules

I Each pair (label, charge) has a set of associated rules
I For instance, the rule [a]0h → []+h b can be applied to

a membrane having label h and charge 0
I The charge represents a kind of state of the membrane,

controlling which set of rules can be applied
I We only use three kinds of rule in this paper:

I Send-out communication rules: [a]αh → []βh b

I Send-in communication rules: a []αh → [b]βh
I Nonelementary division rules

6/18

Evolution rules

I Each pair (label, charge) has a set of associated rules
I For instance, the rule [a]0h → []+h b can be applied to

a membrane having label h and charge 0
I The charge represents a kind of state of the membrane,

controlling which set of rules can be applied
I We only use three kinds of rule in this paper:

I Send-out communication rules: [a]αh → []βh b
I Send-in communication rules: a []αh → [b]βh

I Nonelementary division rules

6/18

Evolution rules

I Each pair (label, charge) has a set of associated rules
I For instance, the rule [a]0h → []+h b can be applied to

a membrane having label h and charge 0
I The charge represents a kind of state of the membrane,

controlling which set of rules can be applied
I We only use three kinds of rule in this paper:

I Send-out communication rules: [a]αh → []βh b
I Send-in communication rules: a []αh → [b]βh
I Nonelementary division rules

6/18

Nonelementary division
I A nonelementary division rule separates

positive and negative children membranes

I The neutral children membranes are duplicated instead
I For instance: consider [[]+h1

[]−h2
]0h → [[]0h1

]+h [[]0h2
]−h

7/18

Nonelementary division
I A nonelementary division rule separates

positive and negative children membranes
I The neutral children membranes are duplicated instead

I For instance: consider [[]+h1
[]−h2

]0h → [[]0h1
]+h [[]0h2

]−h

7/18

Nonelementary division
I A nonelementary division rule separates

positive and negative children membranes
I The neutral children membranes are duplicated instead
I For instance: consider [[]+h1

[]−h2
]0h → [[]0h1

]+h [[]0h2
]−h

h1

+

bc

h3

0

aaa

h2

−

h

0

7/18

Nonelementary division
I A nonelementary division rule separates

positive and negative children membranes
I The neutral children membranes are duplicated instead
I For instance: consider [[]+h1

[]−h2
]0h → [[]0h1

]+h [[]0h2
]−h

h1

+

bc

h3

0

aaa

h2

−

h

0

7/18

Nonelementary division
I A nonelementary division rule separates

positive and negative children membranes
I The neutral children membranes are duplicated instead
I For instance: consider [[]+h1

[]−h2
]0h → [[]0h1

]+h [[]0h2
]−h

h1

0

bc

h3

0

aaa

h2

0

h3

0

aaa

h h

−+

7/18

Recogniser P systems

I To decide a language L, we map each string x to a P system Πx

I Πx decides x ∈ L by emitting an object yes or no
from the outermost membrane and halting

I The map x 7→ Πx is computed by a polytime Turing machine M

M

0 1
0

x ∈ Σ?

yes

no

aab

Πx = M (x)

a

8/18

Recogniser P systems

I To decide a language L, we map each string x to a P system Πx

I Πx decides x ∈ L by emitting an object yes or no
from the outermost membrane and halting

I The map x 7→ Πx is computed by a polytime Turing machine M

M

0 1
0

x ∈ Σ?

yes

no

aab

Πx = M (x)

a

8/18

Recogniser P systems

I To decide a language L, we map each string x to a P system Πx

I Πx decides x ∈ L by emitting an object yes or no
from the outermost membrane and halting

I The map x 7→ Πx is computed by a polytime Turing machine M

M

0 1
0

x ∈ Σ?

yes

no

aab

Πx = M (x)

a

8/18

Recogniser P systems

I To decide a language L, we map each string x to a P system Πx

I Πx decides x ∈ L by emitting an object yes or no
from the outermost membrane and halting

I The map x 7→ Πx is computed by a polytime Turing machine M

M

0 1
0

x ∈ Σ?

yes

no

aab

Πx = M (x)

a

8/18

The complexity class PTETRA

Denote by n2 the tetration (iterated exponentiation) operation

n2 = 222·
··

2︸ ︷︷ ︸
n times

Definition
PTETRA is the class of languages decided by Turing machines
operating in “tetrational time” p(n)2 for some polynomial p

Proposition
PTETRA coincides with tetrational space, and is closed
under complement, union, intersection, and polytime reductions

9/18

The complexity class PTETRA

Denote by n2 the tetration (iterated exponentiation) operation

n2 = 222·
··

2︸ ︷︷ ︸
n times

Definition
PTETRA is the class of languages decided by Turing machines
operating in “tetrational time” p(n)2 for some polynomial p

Proposition
PTETRA coincides with tetrational space, and is closed
under complement, union, intersection, and polytime reductions

9/18

The complexity class PTETRA

Denote by n2 the tetration (iterated exponentiation) operation

n2 = 222·
··

2︸ ︷︷ ︸
n times

Definition
PTETRA is the class of languages decided by Turing machines
operating in “tetrational time” p(n)2 for some polynomial p

Proposition
PTETRA coincides with tetrational space, and is closed
under complement, union, intersection, and polytime reductions

9/18

How large is PTETRA?

RE

R

PR

PTETRA

ELEMENTARY

EXP

P

All inclusions in this Venn diagram are proper

10/18

Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount
of space (number of membranes and objects) modulo
a polynomial overhead

I The number of objects in our P systems only increases
via nonelementary membrane division

I We need to count the maximum number of membranes
during the computation. . .

I . . . keeping in mind that the initial number is m = poly(n)

11/18

Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount
of space (number of membranes and objects) modulo
a polynomial overhead

I The number of objects in our P systems only increases
via nonelementary membrane division

I We need to count the maximum number of membranes
during the computation. . .

I . . . keeping in mind that the initial number is m = poly(n)

11/18

Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount
of space (number of membranes and objects) modulo
a polynomial overhead

I The number of objects in our P systems only increases
via nonelementary membrane division

I We need to count the maximum number of membranes
during the computation. . .

I . . . keeping in mind that the initial number is m = poly(n)

11/18

Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount
of space (number of membranes and objects) modulo
a polynomial overhead

I The number of objects in our P systems only increases
via nonelementary membrane division

I We need to count the maximum number of membranes
during the computation. . .

I . . . keeping in mind that the initial number is m = poly(n)

11/18

Nonelementary division stops in a finite number of steps

+ −

12/18

Nonelementary division stops in a finite number of steps

+ − + +− −

12/18

Nonelementary division stops in a finite number of steps

+ − + + + + + +− − − − − −

12/18

Nonelementary division stops in a finite number of steps

+ − + + + + + +− − − − − −

no further division
is possible here

12/18

Applying division to all levels

Proposition
Suppose we apply all possible division rules to the complete
m-ary tree of m levels, and that the rules are applied level-by-level,
bottom-up (this is the worst case). Then the final number of nodes
is bounded by O(m2)2

Proposition
A family of P system {Πx : x ∈ Σ?} can be simulated
by a Turing machine in space p(n)2 · p(n) for some polynomial p

Theorem
The class of languages decidable by this variant of P systems is
a subset of PTETRA

13/18

Applying division to all levels

Proposition
Suppose we apply all possible division rules to the complete
m-ary tree of m levels, and that the rules are applied level-by-level,
bottom-up (this is the worst case). Then the final number of nodes
is bounded by O(m2)2

Proposition
A family of P system {Πx : x ∈ Σ?} can be simulated
by a Turing machine in space p(n)2 · p(n) for some polynomial p

Theorem
The class of languages decidable by this variant of P systems is
a subset of PTETRA

13/18

Applying division to all levels

Proposition
Suppose we apply all possible division rules to the complete
m-ary tree of m levels, and that the rules are applied level-by-level,
bottom-up (this is the worst case). Then the final number of nodes
is bounded by O(m2)2

Proposition
A family of P system {Πx : x ∈ Σ?} can be simulated
by a Turing machine in space p(n)2 · p(n) for some polynomial p

Theorem
The class of languages decidable by this variant of P systems is
a subset of PTETRA

13/18

Can the upper bound be actually achieved?

I By using a few auxiliary membranes and objects. . .
I . . . and forcing the divisions to occurr in a bottom-up order

by using the electrical charges. . .
I . . . we can produce tetrationally many membranes and,

as a consequence, tetrationally many objects

I How can we exploit this feature?

14/18

Can the upper bound be actually achieved?

I By using a few auxiliary membranes and objects. . .
I . . . and forcing the divisions to occurr in a bottom-up order

by using the electrical charges. . .
I . . . we can produce tetrationally many membranes and,

as a consequence, tetrationally many objects
I How can we exploit this feature?

14/18

Simulating register (counter) machines

r1 r2 r3 r4 r5

one membrane
per register

aaa
aaa
aa

pi

aaaaaa
aaaaaaaa
aaaaaa

aa

the number of a’s is the
value of the register

h

0
00000

“spare” a’s to perform
increment operations

program counter object

15/18

Solving PTETRA problems via P systems

By exploiting the nonelementary division process
we can produce tetrationally many spare a’s

Proposition
Tetrational-space register machines (hence TMs) can be simulated
by our variant of P system

Theorem
The class of languages decided by our variant of P system
is exactly PTETRA

16/18

Solving PTETRA problems via P systems

By exploiting the nonelementary division process
we can produce tetrationally many spare a’s

Proposition
Tetrational-space register machines (hence TMs) can be simulated
by our variant of P system

Theorem
The class of languages decided by our variant of P system
is exactly PTETRA

16/18

Solving PTETRA problems via P systems

By exploiting the nonelementary division process
we can produce tetrationally many spare a’s

Proposition
Tetrational-space register machines (hence TMs) can be simulated
by our variant of P system

Theorem
The class of languages decided by our variant of P system
is exactly PTETRA

16/18

Conclusions and open problems

I We described a variant of P systems that, although
non computationally universal, decides a very large class
of languages

I Do other nature-inspired computing devices characterise
PTETRA or other similarly large classes?

I Can we characterise the primitive recursive languages?

17/18

Conclusions and open problems

I We described a variant of P systems that, although
non computationally universal, decides a very large class
of languages

I Do other nature-inspired computing devices characterise
PTETRA or other similarly large classes?

I Can we characterise the primitive recursive languages?

17/18

Conclusions and open problems

I We described a variant of P systems that, although
non computationally universal, decides a very large class
of languages

I Do other nature-inspired computing devices characterise
PTETRA or other similarly large classes?

I Can we characterise the primitive recursive languages?

17/18

Thanks for your attention!

