On a powerful class of non-universal
P systems with active membranes

Antonio E. Porreca Alberto Leporati Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Universita degli Studi di Milano-Bicocca, Italy

14th Developments in Language Theory
London, Ontario, 19 August 2010

Introduction

» Membrane systems (P systems) are devices inspired
by structure and functioning of biological cells
introduced by G. Paun in 1998

2/18

Introduction

» Membrane systems (P systems) are devices inspired
by structure and functioning of biological cells
introduced by G. Paun in 1998

» They can be used as language recognisers
and most variants are computationally universal

2/18

Introduction

» Membrane systems (P systems) are devices inspired
by structure and functioning of biological cells
introduced by G. Paun in 1998

» They can be used as language recognisers
and most variants are computationally universal

» We show a variant of P system that decides exactly
the languages decided by Turing machines working
in tetrational (iterated exponential) time and space

2/18

Outline

v

Description of our variant of P systems

v

Languages decidable in tetrational time

v

How much space can P systems use? (upper bound)

v

Simulating tetrational-space TMs (lower bound)

v

Conclusions and open problems

3/18

The membrane structure of P systems

» Membranes divide the cell into regions
» Membranes have fixed label and changeable electrical charge

4/18

The membrane structure of P systems

» Membranes divide the cell into regions
» Membranes have fixed label and changeable electrical charge

L1 LT L1000,

4/18

Contents of the membranes

Each membrane contains a multiset of objects
(symbols from an alphabet I') representing molecules

+

hy

aaabbc

[aaabbc [bec]f; [abelif h,

5/18

Evolution rules

» Each pair (label, charge) has a set of associated rules

6/18

Evolution rules

» Each pair (label, charge) has a set of associated rules

> For instance, the rule [a]) — []/ b can be applied to
a membrane having label h and charge 0

6/18

Evolution rules

» Each pair (label, charge) has a set of associated rules

> For instance, the rule [a]) — []/ b can be applied to
a membrane having label h and charge 0

» The charge represents a kind of state of the membrane,
controlling which set of rules can be applied

6/18

Evolution rules

v

Each pair (label, charge) has a set of associated rules

v

For instance, the rule [a]? — []," b can be applied to
a membrane having label h and charge 0

v

The charge represents a kind of state of the membrane,
controlling which set of rules can be applied

We only use three kinds of rule in this paper:

v

6/18

Evolution rules

v

Each pair (label, charge) has a set of associated rules

v

For instance, the rule [a]? — []," b can be applied to
a membrane having label h and charge 0

v

The charge represents a kind of state of the membrane,
controlling which set of rules can be applied
We only use three kinds of rule in this paper:

» Send-out communication rules: [a]" — []’; b

v

6/18

Evolution rules

» Each pair (label, charge) has a set of associated rules
> For instance, the rule [a]) — []/ b can be applied to
a membrane having label h and charge 0
» The charge represents a kind of state of the membrane,
controlling which set of rules can be applied
» We only use three kinds of rule in this paper:
» Send-out communication rules: [a]" — []’; b
» Send-in communication rules: a [] — [b],f

6/18

Evolution rules

» Each pair (label, charge) has a set of associated rules
> For instance, the rule [a]) — []/ b can be applied to
a membrane having label h and charge 0
» The charge represents a kind of state of the membrane,
controlling which set of rules can be applied
» We only use three kinds of rule in this paper:
» Send-out communication rules: [a]" — []’; b
» Send-in communication rules: a [] — [b],f
» Nonelementary division rules

6/18

Nonelementary division

» A nonelementary division rule separates
positive and negative children membranes

7/18

Nonelementary division

» A nonelementary division rule separates
positive and negative children membranes

» The neutral children membranes are duplicated instead

7/18

Nonelementary division
» A nonelementary division rule separates
positive and negative children membranes
» The neutral children membranes are duplicated instead
> For instance: consider [[], [1, 1) — [[17 1, [[17,],

7/18

Nonelementary division
» A nonelementary division rule separates
positive and negative children membranes
» The neutral children membranes are duplicated instead
> For instance: consider [[], [1, 1) — [[17 1, [[17,],

7/18

Nonelementary division

» A nonelementary division rule separates
positive and negative children membranes

» The neutral children membranes are duplicated instead
> For instance: consider [[], [1, 1) — [[17 1, [[17,],

7/18

Recogniser P systems

» To decide a language L, we map each string x to a P system 1,

8/18

Recogniser P systems
» To decide a language L, we map each string x to a P system 1,

» [, decides x € L by emitting an object yes or no
from the outermost membrane and halting

8/18

Recogniser P systems

» To decide a language L, we map each string x to a P system 1,

» [, decides x € L by emitting an object yes or no
from the outermost membrane and halting

» The map x — [y is computed by a polytime Turing machine M

8/18

Recogniser P systems

» To decide a language L, we map each string x to a P system 1,

» [, decides x € L by emitting an object yes or no
from the outermost membrane and halting

» The map x — [y is computed by a polytime Turing machine M

yes

2

: Y @0
SR LR

no

8/18

The complexity class PTETRA

Denote by "2 the tetration (iterated exponentiation) operation
2
"y = 2%
—_—

n times

9/18

The complexity class PTETRA

Denote by "2 the tetration (iterated exponentiation) operation
2

ne __ 2%
2=2

n times

Definition
PTETRA is the class of languages decided by Turing machines
operating in “tetrational time” P("2 for some polynomial p

9/18

The complexity class PTETRA

Denote by "2 the tetration (iterated exponentiation) operation
2

ne __ 2%
2=2

n times

Definition
PTETRA is the class of languages decided by Turing machines
operating in “tetrational time” P("2 for some polynomial p

Proposition
PTETRA coincides with tetrational space, and is closed
under complement, union, intersection, and polytime reductions

9/18

How large is PTETRA?

PTETRA

ELEMENTARY

EXP

()

All inclusions in this Venn diagram are proper

10/18

Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount

of space (number of membranes and objects) modulo
a polynomial overhead

11/18

Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount

of space (number of membranes and objects) modulo
a polynomial overhead

» The number of objects in our P systems only increases
via nonelementary membrane division

11/18

Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount

of space (number of membranes and objects) modulo
a polynomial overhead

» The number of objects in our P systems only increases
via nonelementary membrane division

» We need to count the maximum number of membranes
during the computation. . .

11/18

Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount

of space (number of membranes and objects) modulo
a polynomial overhead

» The number of objects in our P systems only increases
via nonelementary membrane division

» We need to count the maximum number of membranes
during the computation. . .

» ... keeping in mind that the initial number is m = poly(n)

11/18

Nonelementary division stops in a finite number of steps

12/18

Nonelementary division stops in a finite number of steps

12/18

Nonelementary division stops in a finite number of steps

12/18

Nonelementary division stops in a finite number of steps

no further division
is possible here

12/18

Applying division to all levels

Proposition

Suppose we apply all possible division rules to the complete
m-ary tree of m levels, and that the rules are applied level-by-level,
bottom-up (this is the worst case). Then the final number of nodes
is bounded by ©(m*)2

13/18

Applying division to all levels

Proposition

Suppose we apply all possible division rules to the complete
m-ary tree of m levels, and that the rules are applied level-by-level,
bottom-up (this is the worst case). Then the final number of nodes
is bounded by O(m?)

Proposition
A family of P system {1y : x € £*} can be simulated
by a Turing machine in space P(")2 . p(n) for some polynomial p

13/18

Applying division to all levels

Proposition

Suppose we apply all possible division rules to the complete
m-ary tree of m levels, and that the rules are applied level-by-level,
bottom-up (this is the worst case). Then the final number of nodes
is bounded by O(m?)

Proposition
A family of P system {1y : x € £*} can be simulated
by a Turing machine in space P(")2 . p(n) for some polynomial p

Theorem
The class of languages decidable by this variant of P systems is
a subset of PTETRA

13/18

Can the upper bound be actually achieved?

» By using a few auxiliary membranes and objects. . .

» ... and forcing the divisions to occurr in a bottom-up order
by using the electrical charges. ..

» ... we can produce tetrationally many membranes and,
as a consequence, tetrationally many objects

14/18

Can the upper bound be actually achieved?

v

By using a few auxiliary membranes and objects. . .

v

. and forcing the divisions to occurr in a bottom-up order
by using the electrical charges. ..

» ... we can produce tetrationally many membranes and,
as a consequence, tetrationally many objects

» How can we exploit this feature?

14/18

Simulating register (counter) machines

one membrane the number of a’s is the
per register value of the register

0 0 0
n rn r3
aaaaaa
aaaaaaaa
aaaaaa

“spare” a’s to perform

. : program counter object
Increment operations

15/18

Solving PTETRA problems via P systems

By exploiting the nonelementary division process
we can produce tetrationally many spare a’s

16/18

Solving PTETRA problems via P systems
By exploiting the nonelementary division process
we can produce tetrationally many spare a’s

Proposition
Tetrational-space register machines (hence TMs) can be simulated
by our variant of P system

16/18

Solving PTETRA problems via P systems

By exploiting the nonelementary division process
we can produce tetrationally many spare a’s

Proposition
Tetrational-space register machines (hence TMs) can be simulated
by our variant of P system

Theorem
The class of languages decided by our variant of P system
is exactly PTETRA

16/18

Conclusions and open problems

» We described a variant of P systems that, although
non computationally universal, decides a very large class
of languages

17/18

Conclusions and open problems

» We described a variant of P systems that, although

non computationally universal, decides a very large class
of languages

» Do other nature-inspired computing devices characterise
PTETRA or other similarly large classes?

17/18

Conclusions and open problems

» We described a variant of P systems that, although

non computationally universal, decides a very large class
of languages

» Do other nature-inspired computing devices characterise
PTETRA or other similarly large classes?

» Can we characterise the primitive recursive languages?

17/18

Thanks for your attention!

