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Introduction

I Membrane systems (P systems) are devices inspired
by structure and functioning of biological cells
introduced by G. Păun in 1998

I They can be used as language recognisers
and most variants are computationally universal

I We show a variant of P system that decides exactly
the languages decided by Turing machines working
in tetrational (iterated exponential) time and space
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Outline

I Description of our variant of P systems
I Languages decidable in tetrational time
I How much space can P systems use? (upper bound)
I Simulating tetrational-space TMs (lower bound)
I Conclusions and open problems
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The membrane structure of P systems
I Membranes divide the cell into regions
I Membranes have fixed label and changeable electrical charge
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Contents of the membranes

Each membrane contains a multiset of objects
(symbols from an alphabet Γ) representing molecules
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Evolution rules

I Each pair (label, charge) has a set of associated rules

I For instance, the rule [a]0h → [ ]+h b can be applied to
a membrane having label h and charge 0

I The charge represents a kind of state of the membrane,
controlling which set of rules can be applied

I We only use three kinds of rule in this paper:
I Send-out communication rules: [a]αh → [ ]βh b
I Send-in communication rules: a [ ]αh → [b]βh
I Nonelementary division rules
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Nonelementary division
I A nonelementary division rule separates

positive and negative children membranes

I The neutral children membranes are duplicated instead
I For instance: consider [ [ ]+h1

[ ]−h2
]0h → [ [ ]0h1

]+h [ [ ]0h2
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Recogniser P systems

I To decide a language L, we map each string x to a P system Πx

I Πx decides x ∈ L by emitting an object yes or no
from the outermost membrane and halting

I The map x 7→ Πx is computed by a polytime Turing machine M

M
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Πx = M (x)

a
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The complexity class PTETRA

Denote by n2 the tetration (iterated exponentiation) operation

n2 = 222·
··

2︸ ︷︷ ︸
n times

Definition
PTETRA is the class of languages decided by Turing machines
operating in “tetrational time” p(n)2 for some polynomial p

Proposition
PTETRA coincides with tetrational space, and is closed
under complement, union, intersection, and polytime reductions

9/18



The complexity class PTETRA

Denote by n2 the tetration (iterated exponentiation) operation

n2 = 222·
··

2︸ ︷︷ ︸
n times

Definition
PTETRA is the class of languages decided by Turing machines
operating in “tetrational time” p(n)2 for some polynomial p

Proposition
PTETRA coincides with tetrational space, and is closed
under complement, union, intersection, and polytime reductions

9/18



The complexity class PTETRA

Denote by n2 the tetration (iterated exponentiation) operation

n2 = 222·
··

2︸ ︷︷ ︸
n times

Definition
PTETRA is the class of languages decided by Turing machines
operating in “tetrational time” p(n)2 for some polynomial p

Proposition
PTETRA coincides with tetrational space, and is closed
under complement, union, intersection, and polytime reductions

9/18



How large is PTETRA?

RE

R
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ELEMENTARY
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P

All inclusions in this Venn diagram are proper
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Space required to simulate P systems

Fact
A P system can be simulated by a TM using the same amount
of space (number of membranes and objects) modulo
a polynomial overhead

I The number of objects in our P systems only increases
via nonelementary membrane division

I We need to count the maximum number of membranes
during the computation. . .

I . . . keeping in mind that the initial number is m = poly(n)
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Nonelementary division stops in a finite number of steps
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Nonelementary division stops in a finite number of steps

+ − + + + + + +− − − − − −

no further division
is possible here
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Applying division to all levels

Proposition
Suppose we apply all possible division rules to the complete
m-ary tree of m levels, and that the rules are applied level-by-level,
bottom-up (this is the worst case). Then the final number of nodes
is bounded by O(m2)2

Proposition
A family of P system {Πx : x ∈ Σ?} can be simulated
by a Turing machine in space p(n)2 · p(n) for some polynomial p

Theorem
The class of languages decidable by this variant of P systems is
a subset of PTETRA
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Can the upper bound be actually achieved?

I By using a few auxiliary membranes and objects. . .
I . . . and forcing the divisions to occurr in a bottom-up order

by using the electrical charges. . .
I . . . we can produce tetrationally many membranes and,

as a consequence, tetrationally many objects

I How can we exploit this feature?
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Simulating register (counter) machines
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one membrane
per register
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the number of a’s is the
value of the register
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Solving PTETRA problems via P systems

By exploiting the nonelementary division process
we can produce tetrationally many spare a’s

Proposition
Tetrational-space register machines (hence TMs) can be simulated
by our variant of P system

Theorem
The class of languages decided by our variant of P system
is exactly PTETRA
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Conclusions and open problems

I We described a variant of P systems that, although
non computationally universal, decides a very large class
of languages

I Do other nature-inspired computing devices characterise
PTETRA or other similarly large classes?

I Can we characterise the primitive recursive languages?
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Thanks for your attention!


