P systems simulating oracle computations

Antonio E. Porreca
 Alberto Leporati Giancarlo Mauri Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca, Italy

12th Conference on Membrane Computing Fontainebleau, France, 24 August 2011

Summary

- We show how to reuse existing recogniser P systems as "subroutines"
- This allows us to simulate oracles
- The procedure is quite general (though technical details may vary)
- As an application, we improve the lower bound on $\mathbf{P M} \mathbf{C}_{\mathcal{A M}(-\mathrm{d},-\mathrm{n})}$ to $\mathbf{P}^{\mathbf{P P}}$

P systems with active membranes

- Known for their ability to solve computationally hard problems
- Here we focus on restricted elementary membranes (no nonelementary division, no dissolution)

Object evolution
Communication (send-in)
Communication (send-out)
Elementary division

$$
\begin{aligned}
& {[a \rightarrow w]_{h}^{\alpha}} \\
& \mathrm{a}[]_{h}^{\alpha} \rightarrow[b]_{h}^{\beta} \\
& {[a]_{h}^{\alpha} \rightarrow[]_{h}^{\beta} b} \\
& {[a]_{h}^{\alpha} \rightarrow[b]_{h}^{\beta}[c]_{h}^{\gamma}}
\end{aligned}
$$

Uniform families of recogniser P systems

- For each input length $n=|x|$ we construct a P system Π_{n} receiving as input a multiset encoding x
- Both are constructed by fixed polytime Turing machines
- The resulting P system decides if $x \in L$

The complexity class $\mathbf{P M} \mathbf{C}_{\mathcal{A M}(-\mathrm{d},-\mathrm{n})}$

It consists of the languages recognised in polytime by uniform families of P systems with restricted elementary membranes

- Contains NP problems [Zandron et al. 2000] (semi-uniform solution)
- Contains NP problems [Pérez-Jiménez et al. 2003] (first uniform solution)
- Is contained in PSPACE [Sosík, Rodríguez-Patón 2007]
- Contains PP problems [Porreca et al. 2010, 2011] On the other hand, by using nonelementary division (class $\mathbf{P M C}_{\mathcal{A M}}$) we obtain exactly PSPACE

Solving 3SAT

Is $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ satisfiable?

Solving 3SAT

Is $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ satisfiable?

$6 / 16$

Solving 3SAT

Is $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ satisfiable?

The complexity class PP

Definition

$L \in \mathbf{P P}$ if it is accepted in polytime by a nondeterministic TM such that more than half of its computations are accepting

Solving PP is "essentially the same as" counting the number of solutions

Problem (Threshold-3SAT)
Given a Boolean formula φ over m variables and an integer $k<2^{m}$, do more than k assignments out of 2^{m} satisfy φ ?

Theorem
Threshold-3SAT is PP-complete

Solving Threshold-3SAT

Does $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ have more than 3 satisfying assignments?

Solving Threshold-3SAT

Does $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ have more than 3 satisfying assignments?

Solving Threshold-3SAT

Does $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ have more than 3 satisfying assignments?

Solving Threshold-3SAT

Does $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ have more than 3 satisfying assignments?

Solving Threshold-3SAT

Does $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ have more than 3 satisfying assignments?

Solving Threshold-3SAT

Does $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ have more than 3 satisfying assignments?

Solving Threshold-3SAT

Does $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ have more than 3 satisfying assignments?

Solving Threshold-3SAT

Does $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ have more than 3 satisfying assignments?

Solving Threshold-3SAT

Does $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ have more than 3 satisfying assignments?

Simulating Turing machines I

Simulating Turing machines II

$$
\delta\left(q_{1}, 0\right)=\left(q_{2}, 1, \triangleright\right) \quad\left\{\begin{array}{l}
\mathrm{H}_{q_{1}, i},[]_{i}^{-} \rightarrow\left[\mathrm{H}_{q_{2}, i+1}\right]_{i}^{+} \\
{\left[\mathrm{H}_{q_{2}, i+1}\right]_{i}^{+} \rightarrow[]_{i}^{+} \mathrm{H}_{q_{2}, i+1}}
\end{array}\right.
$$

Simulating Turing machines II

$$
\delta\left(q_{1}, 0\right)=\left(q_{2}, 1, \triangleright\right) \quad\left\{\begin{array}{l}
\mathrm{H}_{q_{1}, i},[]_{i}^{-} \rightarrow\left[\mathrm{H}_{q_{2}, i+1}\right]_{i}^{+} \\
{\left[\mathrm{H}_{q_{2}, i+1}\right]_{i}^{+} \rightarrow[]_{i}^{+} \mathrm{H}_{q_{2}, i+1}}
\end{array}\right.
$$

Simulating Turing machines II

$$
\delta\left(q_{1}, 0\right)=\left(q_{2}, 1, \triangleright\right) \quad\left\{\begin{array}{l}
\mathrm{H}_{q_{1}, i},[]_{i}^{-} \rightarrow\left[\mathrm{H}_{q_{2}, i+1}\right]_{i}^{+} \\
{\left[\mathrm{H}_{q_{2}, i+1}\right]_{i}^{+} \rightarrow[]_{i}^{+} \mathrm{H}_{q_{2}, i+1}}
\end{array}\right.
$$

Simulating Turing machines II

$$
\delta\left(q_{1}, 0\right)=\left(q_{2}, 1, \triangleright\right) \quad\left\{\begin{array}{l}
\mathrm{H}_{q_{1}, i},[]_{i}^{-} \rightarrow\left[\mathrm{H}_{q_{2}, i+1}\right]_{i}^{+} \\
{\left[\mathrm{H}_{q_{2}, i+1}\right]_{i}^{+} \rightarrow[]_{i}^{+} \mathrm{H}_{q_{2}, i+1}}
\end{array}\right.
$$

Simulating Turing machines II

$$
\delta\left(q_{1}, 0\right)=\left(q_{2}, 1, \triangleright\right) \quad\left\{\begin{array}{l}
\mathrm{H}_{q_{1}, i},[]_{i}^{-} \rightarrow\left[\mathrm{H}_{q_{2}, i+1}\right]_{i}^{+} \\
{\left[\mathrm{H}_{q_{2}, i+1}\right]_{i}^{+} \rightarrow[]_{i}^{+} \mathrm{H}_{q_{2}, i+1}}
\end{array}\right.
$$

Using P systems as subroutines

Using P systems as subroutines

Using P systems as subroutines

$11 / 16$

Using P systems as subroutines

$11 / 16$

Using P systems as subroutines

Using P systems as subroutines

$11 / 16$

Using P systems as subroutines

$11 / 16$

Using P systems as subroutines

$11 / 16$

Using P systems as subroutines

Main result

Theorem
$\mathbf{P}^{\mathbf{P P}} \subseteq \mathbf{P M C}_{\mathcal{A M}(-\mathrm{d},-\mathrm{n})}$
Proof.

- Any polytime TM M with a PP oracle can be simulated by a polytime TM M^{\prime} with an oracle for THRESHOLD-3SAT and only one tape
- Just apply a reduction (which always exists, since Threshold-3SAT is PP-complete) before querying the oracle
- And we know how to simulate the TM M^{\prime} with a polytime $\mathcal{A M}(-\mathrm{d},-\mathrm{n})$ uniform family.

Discussion I

- We can solve QSAT (PSPACE-complete) by using nonelementary division and a membrane structure of depth $\Theta(n)$
- QSAT instances have an arbitrary number of alternations of quantifiers
- By fixing the first quantifier (\forall or \exists) and the number of alternations, we get complete problems for all levels of the polynomial hierarchy
- Formulae with k alternations can be solved by P systems using nonelementary division and a membrane structure of depth $\Theta(k)$
- Notice that k does not depend on the input size

Discussion II

- Let $\mathbf{P H}$ be the union of the levels of the polynomial hierarchy
- Toda's theorem tells us that $\mathbf{P H} \subseteq \mathbf{P}^{\mathbf{P P}}$
- So we also have $\mathbf{P H} \subseteq \mathbf{P M C}_{\mathcal{A M}(-\mathrm{d},-\mathrm{n})}$
- This means that all levels of the polynomial hierarchy can be solved by using P systems with only elementary division and membrane structure of depth 3
- Does this mean PSPACE $\subseteq \mathbf{P M C}_{\mathcal{A M}(-\mathrm{d},-\mathrm{n})}$ and so PSPACE $=\mathbf{P M} \mathbf{C}_{\mathcal{A M}(-\mathrm{d},-\mathrm{n})}$?
- Not immediately: PH is not known neither conjectured to be PSPACE

Open problems

- Prove that we can always do the oracle simulation
- If we can reset the "oracle P systems" then we only need a single copy of it
- It might still be possible that PMC $_{\mathcal{A M}(-\mathrm{d},-\mathrm{n})}=$ PSPACE even if $\mathbf{P H} \neq \mathbf{P S P A C E}$
- But maybe it would be more interesting if it turns out that $\mathbf{P M} \mathbf{C}_{\mathcal{A M}(-d,-n)}=\mathbf{P}^{\mathbf{P P}}$

Merci de votre attention!

Thanks for your attention!

