### P systems with elementary active membranes: Beyond **NP** and **coNP**

#### Antonio E. Porreca Alberto Leporati Giancarlo Mauri Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano-Bicocca, Italy

11th Conference on Membrane Computing Jena, Germany, 25 August 2010

#### Summary

- P systems with active membranes are thoroughly investigated from a complexity-theoretic standpoint
- They have been known to solve NP and coNP problems in polytime, using elementary division
- We improve this result by solving a **PP**-complete problem

$$\mathbf{PP} \subseteq \mathbf{PMC}_{\mathcal{AM}(-d,-n)}$$

#### Outline

P systems with elementary active membranes

Recogniser P systems and uniformity

The complexity class **PP** 

Solving a **PP**-complete problem

Conclusions and open problems

#### Membrane structure and its contents

- Membranes have a fixed label and a changeable charge
- The charges regulate which set of rules can be applied
- ► In each membrane we have the usual multiset of objects



Rules for restricted elementary active membranes

Object evolution $[a \rightarrow w]_h^{\alpha}$ Send out $[a]_h^{\alpha} \rightarrow []_h^{\beta} b$ Send in $a []_h^{\alpha} \rightarrow [b]_h^{\beta}$ Elementary division $[a]_h^{\alpha} \rightarrow [b]_h^{\beta} [c]_h^{\gamma}$ 

No dissolution or nonelementary division Maximally parallel application of rules

### Uniform families of recogniser P systems

- For each input length n = |x| we construct a P system Π<sub>n</sub> receiving as input a multiset encoding x
- Both are constructed by fixed polytime Turing machines
- The resulting P system decides if  $x \in L$



### Timeline of P systems with active membranes

- Attacking (and solving) NP-complete problems [Păun 1999], uses dissolution and nonelementary division
- Solving NP-complete problems [Zandron et al. 2000], no dissolution nor nonelementary division
- Solving NP-complete problems [Pérez-Jiménez et al. 2003], uniform, no dissolution nor nonelementary division
- **PSPACE** upper bound [Sosík, Rodríguez-Patón 2007]
- Solving PP-complete problems [Alhazov et al. 2009], no nonelementary division, uses either cooperation or postprocessing

### The **PP** complexity class

#### Definition

**PP** is the class of languages decided by polytime probabilistic Turing machines with error probability strictly less that 1/2

#### Definition (equivalent)

**PP** is the class of languages decided by polytime nondeterministic Turing machines such that more than half of the computations accept

## How large is **PP**?



#### The SQRT-3SAT problem

#### Problem (SQRT-3SAT)

Given a Boolean formula of m variables in 3CNF, do more that  $\sqrt{2^m}$  assignments satisfy it?

Fact SQRT-3SAT is **PP**-complete

### Encoding SQRT-3SAT instances

- There are  $\binom{m}{3}$  sets of 3 variables out of m
- Each variable can be positive or negated (2<sup>3</sup> ways)
- Hence there are  $n = 8\binom{m}{3}$  possible clauses
- ► We can represent a 3CNF formula by an *n*-bit string
- Checking well-formedness and recovering *m* from *n* are easy (polytime)

#### An example

• If we have 3 variables, the number of clauses is  $8\binom{3}{3} = 8$ 

Then the formula

$$\varphi = \underbrace{\left(x_1 \lor \neg x_2 \lor x_3\right)}_{3 \text{rd}} \land \underbrace{\left(\neg x_1 \lor x_2 \lor \neg x_3\right)}_{6 \text{th}} \land \underbrace{\left(\neg x_1 \lor \neg x_2 \lor x_3\right)}_{7 \text{th}}$$

is encoded as

 $\langle \varphi \rangle = 0010\ 0110$ 

A membrane computing algorithm for SQRT-3SAT

#### Algorithm

Let  $\varphi$  be a 3CNF formula of *m* variables

- 1. Generate  $2^m$  membranes, one for each assignment
- 2. Evaluate  $\varphi$  in parallel in each of these membranes, send out object *t* from them if it is satisfied
- 3. Erase  $\lceil \sqrt{2^m} \rceil 1$  instances of t
- 4. Output YES if an instance of t remains and NO otherwise

Phase 3 was first proposed by Alhazov et al. 2009 using cooperative rewriting rules





0  $\underbrace{t_1 t_2 \cdots}_{1}^{0} \underbrace{t_1 f_2 \cdots}_{1}^{0} \underbrace{f_1 t_2 \cdots}_{1}^{0} \underbrace{f_1 t_2 \cdots}_{1}^{0} \underbrace{f_1 f_2 \cdots}_{1}^{0} \underbrace{f_1 f$ 



0  $(t_1 f_2 \cdots)^0_1 (f_1 t_2 \cdots)^0_1 (f_1 f_2 \cdots)^0_1$  $t_1 t_2 \cdots$ 0













#### Proposition

There is a uniform construction of the family of P systems solving SQRT-3SAT

Proposition  $SQRT-3SAT \in PMC_{AM(-d,-n)}$ 

Theorem  $PP \subseteq PMC_{\mathcal{AM}(-d,-n)}$ 

### In other words...



### Conclusions and open problems

- We solved a **PP**-complete problem in polytime using P systems with restricted active membranes
- ► As a consequence  $PP \subseteq PMC_{AM(-d,-n)} \subseteq PSPACE$  holds
- However, neither inclusion is known to be strict, and a full characterisation is still missing
- This class is possibly larger than PP
- ► Maybe even PMC<sub>AM(-d,-n)</sub> = PSPACE holds?

# Thanks for your attention!