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Summary

I P systems with active membranes are thoroughly investigated
from a complexity-theoretic standpoint

I They have been known to solve NP and coNP problems
in polytime, using elementary division

I We improve this result by solving a PP-complete problem

PP ⊆ PMCAM(−d,−n)
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Membrane structure and its contents

I Membranes have a fixed label and a changeable charge
I The charges regulate which set of rules can be applied
I In each membrane we have the usual multiset of objects
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Rules for restricted elementary active membranes

Object evolution [a→ w]αh

Send out [a]αh → [ ]βh b

Send in a [ ]αh → [b]βh

Elementary division [a]αh → [b]βh [c]γh

No dissolution or nonelementary division
Maximally parallel application of rules
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Uniform families of recogniser P systems

I For each input length n = |x| we construct a P system Πn

receiving as input a multiset encoding x
I Both are constructed by fixed polytime Turing machines
I The resulting P system decides if x ∈ L
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Timeline of P systems with active membranes

I Attacking (and solving) NP-complete problems [Păun 1999],
uses dissolution and nonelementary division

I Solving NP-complete problems [Zandron et al. 2000],
no dissolution nor nonelementary division

I Solving NP-complete problems [Pérez-Jiménez et al. 2003],
uniform, no dissolution nor nonelementary division

I PSPACE upper bound [Sosík, Rodríguez-Patón 2007]
I Solving PP-complete problems [Alhazov et al. 2009],

no nonelementary division, uses either cooperation
or postprocessing
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The PP complexity class

Definition
PP is the class of languages decided by polytime probabilistic
Turing machines with error probability strictly less that 1/2

Definition (equivalent)
PP is the class of languages decided by polytime
nondeterministic Turing machines such that
more than half of the computations accept
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How large is PP?
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The S Q R T -3SAT problem

Problem (S Q R T -3SAT)
Given a Boolean formula of m variables in 3CNF,
do more that

√
2m assignments satisfy it?

Fact
S Q R T -3SAT is PP-complete
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Encoding S Q R T -3SAT instances

I There are
(m

3

)
sets of 3 variables out of m

I Each variable can be positive or negated (23 ways)
I Hence there are n = 8

(m
3

)
possible clauses

I We can represent a 3CNF formula by an n-bit string
I Checking well-formedness and recovering m from n

are easy (polytime)
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An example

I If we have 3 variables, the number of clauses is 8
(3

3

)
= 8

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ ¬x3 x1 ∨ ¬x2 ∨ x3

x1 ∨ ¬x2 ∨ ¬x3 ¬x1 ∨ x2 ∨ x3 ¬x1 ∨ x2 ∨ ¬x3

¬x1 ∨ ¬x2 ∨ x3 ¬x1 ∨ ¬x2 ∨ ¬x3

I Then the formula

ϕ = (x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
3rd

∧ (¬x1 ∨ x2 ∨ ¬x3)︸ ︷︷ ︸
6th

∧ (¬x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
7th

is encoded as
〈ϕ〉 = 0010 0110
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A membrane computing algorithm for S Q R T -3SAT

Algorithm
Let ϕ be a 3CNF formula of m variables

1. Generate 2m membranes, one for each assignment

2. Evaluate ϕ in parallel in each of these membranes,
send out object t from them if it is satisfied

3. Erase d
√

2me − 1 instances of t

4. Output Y E S if an instance of t remains and N O otherwise

Phase 3 was first proposed by Alhazov et al. 2009
using cooperative rewriting rules
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Overview of the computation
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Overview of the computation
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Overview of the computation
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Our main result

Proposition
There is a uniform construction of the family of P systems
solving S Q R T -3SAT

Proposition
S Q R T -3SAT ∈ PMCAM(−d,−n)

Theorem
PP ⊆ PMCAM(−d,−n)
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In other words. . .

P
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Conclusions and open problems

I We solved a PP-complete problem in polytime using
P systems with restricted active membranes

I As a consequence PP ⊆ PMCAM(−d,−n) ⊆ PSPACE holds
I However, neither inclusion is known to be strict,

and a full characterisation is still missing
I This class is possibly larger than PP
I Maybe even PMCAM(−d,−n) = PSPACE holds?
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Thanks for your attention!
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