P systems with hybrid sets

Omar Belingheri, Antonio E. Porreca, Claudio Zandron Università degli Studi di Milano-Bicocca, Italy

Inspiration & other works

Gheorghe Păun, Some quick research topics, Proceedings of the Thirteenth Brainstorming Week on Membrane Computing

Rudi Freund, Sergiu Ivanov, Sergey Verlan, P systems with generalized multisets over totally ordered abelian groups, Proceedings of the 16th International Conference on Membrane Computing (CMC16) "Negative objects"

$$a^3 \rightarrow bc$$

¿When do we stop?

$$a^3 \rightarrow bc$$

Proposal: have catalyst objects

Catalysts obey mass conservation and cannot have negative multiplicity

General rule form

Consequence: rules become context-free

Consequence: no zero test

$$\ell_1$$
: add (r) , ℓ_2 , ℓ_3

$$\ell_1$$
: sub (r) , ℓ_2 , abort

 ℓ_1 : halt

A subset of the registers must be null at the end of legitimate computations

Simulation by partially blind machines

Simulation algorithm

just look at the catalysts

while not halted do

nondeterministically choose a multiset of rules to apply **for** each chosen rule $uk \rightarrow vk$ **do**

add u to the corresponding "negative" registers add v to the corresponding "positive" registers

for each output symbol a do

nondeterministically guess if #a is negative

if guessed negative then

compute Δa in the negative output register

else

compute Δa in the positive output register

"positive" *a*'s in region *h*

"negative" *a*'s in region *h*

"positive" output *a*'s

"negative" output a's

"positive" a's in region h

"negative" *a*'s in region *h*

"positive" output *a*'s

"negative" output a's

"positive" *a*'s in region *h*

"negative" *a*'s in region *h*

"positive" output *a*'s

"negative" output *a*'s

"positive" *a*'s in region *h*

"negative" *a*'s in region *h*

"positive" output *a*'s

"negative" output *a*'s

nondeterministic
guess:
#a < 0

these are empty (otherwise abort)

"positive" output *a*'s

"negative" output a's

"positive" *a*'s in region *h*

"negative" *a*'s in region *h*

"positive" output *a*'s

"negative" output a's

"positive" a's in region h

"negative" *a*'s in region *h*

"positive" output *a*'s

"negative" output a's

"positive" *a*'s in region *h*

"negative" *a*'s in region *h*

"positive" output *a*'s

"negative" output *a*'s

"positive" a's in region h

"negative" *a's* in region *h*

"positive" output *a*'s

"negative" output a's

Summary

Theorem. These kinds of P system can be simulated by a partially blind register machine, and so they are not universal

Improvement

Theorem. These kinds of P system can be simulated by a blind register machine, and so they are even less universal

¡Thanks for your attention!

¡Gracias por su atención!