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Finite, discrete-time 
dynamical systems



Finite, discrete-time dynamical systems
Just a finite set with a transition function (A, f )
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Finite, discrete-time dynamical systems
Just a finite set with a transition function  modulo isomorphism(A, f )



General shape of a dynamical system
A few limit cycles
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The category  of 
dynamical systems

D



The inspiration
The category of endomaps of sets



• The objects are the dynamical systems 


• An arrow  is a function  
which commutes with  and 


(A, f )

(A, f ) φ (B, g) φ : A → B
f g

A A

B B

f

g

φ φ

Objects & arrows 🏹



• In graph-theoretic terms, it’s just the disjoint union





• This represents the alternative execution of  and 


• The identity is the empty system 

(A, f ) + (B, g) = (A ⊎ B, f + g) with ( f + g)(x) = {f(x) if x ∈ A
g(x) if x ∈ B

A B

0 = (∅, ∅)

Necessary but not that interesting
The category  has sums (coproducts)D

+ =



General shape of a dynamical system
It’s a sum of cycles with trees going in

C3( , , , ) + C5( , , , , ) + C1( )

+ +



• In graph-theoretic terms, it’s the tensor product





with 


• This represents the synchronous execution of  and 


• The identity is the singleton system 

(A, f ) × (B, g) = (A × B, f × g)

( f × g)(a, b) = ( f(a), g(b))

A B

1 = ({0}, id)

Now we’re talking!
The category  admits productsD



Product in  is graph tensor productD
Two systems modulo isomorphism

× =



Product in  is graph tensor productD
Temporary state names
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Product in  is graph tensor productD
Cartesian product of the states
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Product in  is graph tensor productD
Arrows iff arrows between both components
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Product in  is graph tensor productD
We forget the state names once again

× =



Introducing: the 
multiplication table, 
poster-size
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Prettier version
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Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



The semiring  of 
dynamical systems

D



• Product is (modulo isomorphism) commutative, associative and 
has identity  in any category where it exists; so, it’s 
a commutative monoid


• Sum is (modulo isomorphism) commutative, associative and has 
identity  in any category where it exists; so, another 
commutative monoid


• The sum is the free commutative monoid (i.e., the multisets) 
over the set of connected, nonempty dynamical systems


• The distributive law and the product annihilation law do not hold 
for arbitrary categories, but they do here

0 = (∅, ∅)

1 = ({0}, id)

Like a ring, without subtraction
 (modulo isomorphisms) is a semiringD



No unique factorisation!



Multiplication table
⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3



• The systems  and  are irreducible


• Any system with a prime number of states is irreducible, 
since the state space is a cartesian product


• So  has two distinct factorisations into irreducibles


            


            

= ×

= ×

And the counterexample is minuscule
No unique factorisation



Systems with arbitrarily 
many factorisations



Theorem
For each , there exist a dynamical system with at least  factorisationsn n
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( )n



Theorem
For each , there exist a dynamical system with at least  factorisationsn n

( )n = × ( )n−1



Theorem
For each , there exist a dynamical system with at least  factorisationsn n

( )n = × ( )n−1

= × ( )n−2( )2



Theorem
For each , there exist a dynamical system with at least  factorisationsn n

( )n = × ( )n−1

= × ( )n−2( )2

= ⋯ = ×( )n−1



A notable subsemiring



•  is initial in the category of semirings


• Meaning that there is only one homomorphism 





• In the case of , the homomorphism is injective, since  
is the free monoid over connected, nonempty dynamical systems


• So  contains a isomorphic copy of 

ℕ

φ : ℕ → D

φ(n) = 1 + 1 + ⋯ + 1
n times

= + + ⋯+
n times

D (D, + )

D ℕ

This means trouble
 is a subsemiring of ℕ D



A bit more algebra, 
of the linear kind



• Here the vectors are dynamical systems and the scalars are naturals


• Trivial because the semimodule axioms are a consequence 
of  being a subsemiring of :








•  as a semimodule has a unique, countably infinite basis 
consisting of all nonempty, connected dynamical systems


• The fact that  is a semimodule will be useful later

ℕ D

n(A + B) = nA + nB (m + n)A = mA + nA

(mn)A = m(nA) 1A = A 0A = n0 = 0

D

D

Like a vector space, but over a semiring
 is a -semimoduleD ℕ



Irreducible systems



• Formally:   


• The total number of systems over exactly  states is 

asymptotically , with  and 


• A reducible system over  states is the product of two systems 
with  and  states such that 


• With a few summations and upper bounds, we get the result


• Notice that this is the opposite of the subsemiring 

lim
n→∞

number of reducible systems over ≤ n states
total number of systems over ≤ n states

= 0

n
η

αn

n
η ≈ 0.443 α ≈ 2.956

n
p q pq = n

ℕ

 is irreducible iff  implies  or A A = BC B = 1 C = 1

Most dynamical systems are irreducible



Polynomial equations 
over D[X1, …, Xm]



• Consider the equation


• There is least one solution

For the analysis of complex systems
Polynomial equations over D[X1, …, Xm]

X = Y = Z =

X + Y2 = Z +



• A ring has additive inverses (aka, it has subtraction)


• Each polynomial equation in a ring can be written as 


• This is not the case for our semiring, which has no subtraction


• The general polynomial equation has the form  
with two polynomials 

p( ⃗X ) = 0

p( ⃗X ) = q( ⃗X )
p, q ∈ D[ ⃗X ]

As opposed to rings
Polynomial equations in semirings



Solvability of polynomial 
equations over  
is undecidable

D



• We have showed that  is a subsemiring of 


• But sometimes enlarging the solution space makes the problem 
actually easier: given 


• Finding if  has solution in  is undecidable


• Finding if  has solution in  is decidable


• Finding if  has solution in  is trivial


• So, what about finding solutions in ?

ℕ D

p, q ∈ ℕ[ ⃗X ]

p( ⃗X ) = q( ⃗X ) ℕ

p( ⃗X ) = q( ⃗X ) ℝ

p( ⃗X ) = q( ⃗X ) ℂ

D

The spectre of Hilbert’s 10th problem is haunting D
Undecidability of polynomial equations



• Let  and  with 



• Then  has the non-natural solution


          


• But, of course, it also has the natural solution , 


• Notice how  and 


• This is not a coincidence!

p(X, Y ) = 2X2 q(X, Y ) = 3Y
p, q ∈ ℕ[X, Y] ≤ D[X, Y]

2X2 = 3Y

X = Y = 2

X′ = 3 Y′ = 6

X′ = |X | Y′ = |Y |

With non-natural solutions
Natural polynomial equations



• 


•      


• Since  is the disjoint union, we have





• Since  is the cartesian product, we have


|∅ | = 0

| | = 1

+

|A + B | = |A | + |B |

×

|AB | = |A | × |B |

It’s a semiring homomorphism
The function “size” | ⋅ | : D → ℕ



Of degree  over the variables ≤ d ⃗X = (X1, …, Xk)
Notation for polynomials p ∈ D[ ⃗X ]

p = ∑
⃗i∈{0,…,d}k

a ⃗i
⃗X ⃗i

where ⃗X ⃗i =
k

∏
j=1

Xij
j



Of degree  over the variables ≤ d ⃗X = (X1, …, Xk)
Notation for polynomials p ∈ D[ ⃗X ]

p = ∑
⃗i∈{0,…,d}k

a ⃗i
⃗X ⃗i

where ⃗X ⃗i =
k

∏
j=1

Xij
j

for instance (X, Y, X)(2,4,3) = X2Y4Z3



• If a polynomial equation over  has a solution 
in , then it also has a solution in 


• In the larger semiring  we may find extra solutions, 
but only if the equation is already solvable over the naturals


• Then, by reduction from Hilbert’s 10th problem, we obtain 
the undecidability in  of equations over …


• …and thus of arbitrary equations over 

ℕ[X1, …, Xk]
Dk ℕk

D

D ℕ[ ⃗X ]

D[ ⃗X ]

Solvability of natural equations
Theorem



Proof
Consider  with p( ⃗X ) = q( ⃗X ) p, q ∈ ℕ[ ⃗X ]

∑
i∈{0,…,d}k

a ⃗i
⃗X ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗X ⃗i



Proof
Suppose that  is a solution⃗A ∈ Dk

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i



Proof
Apply the size function | ⋅ |

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i



Proof
The size function  is a homomorphism| ⋅ |

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i



∑
i∈{0,…,d}k

|a ⃗i | | ⃗A ⃗i | = ∑
i∈{0,…,d}k

|b ⃗i | | ⃗A ⃗i |

Proof
The size function  is a homomorphism| ⋅ |



∑
i∈{0,…,d}k

a ⃗i | ⃗A ⃗i | = ∑
i∈{0,…,d}k

b ⃗i | ⃗A ⃗i |

Proof
The coefficients are natural



∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

Aij
j = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

Aij
j

Proof
We have ⃗A ⃗i = ∏k

j=1 Aij
j



∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

|Aij
j | = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

|Aij
j |

Proof
The size function  is a homomorphism| ⋅ |



∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

|Aj |
ij = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

|Aj |
ij

Proof
The size function  is a homomorphism| ⋅ |



Proof
So  is also a solution, QED| ⃗A | = ( |A1 | , …, |Ak | )

p( |A1 | , …, |Ak | ) = q( |A1 | , …, |Ak | )



Equations with 
non-natural coefficients



• Consider, for instance





• This equation has solution


	 	 	 	 	 	 


• But there is no natural solution, because the RHS 
is non-natural and cannot be made natural by adding stuff

X2 = Y +

X = Y = 2

They do exist
Equations without natural solutions



Polynomial equations 
with constant RHS are 
decidable and in NP



• Since  and  are monotonic wrt the sizes of the operands, each 
 in a solution to the equation has size 


• So it suffices to guess a dynamical system of size  
for each variable in polynomial time, then calculate LHS


• Finally we check whether LHS and RHS are isomorphic, 
exploiting the fact that graph isomorphism is in 


• Only one caveat: if at any time during the calculations the LHS 
becomes larger than , we halt and reject (otherwise the 
algorithm might take exponential time)

+ ×
Xi ≤ |C |

≤ |C |

NP

|C |

For  with p( ⃗X ) = C C ∈ D
Nondeterministic algorithm



Isomorphism 
of dynamical systems 
in polynomial time



Tree canonisation
A polynomial-time algorithm



Tree canonisation
A polynomial-time algorithm
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Tree canonisation
A polynomial-time algorithm

0 23 1
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Tree canonisation
A polynomial-time algorithm

320



1

Tree canonisation
A polynomial-time algorithm

320
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Tree canonisation
A polynomial-time algorithm

0 020 0👉



Tree canonisation
A polynomial-time algorithm

0 022 0 0



Tree canonisation
A polynomial-time algorithm

0 0 22 0 0



Tree canonisation
A polynomial-time algorithm

0 0 22 0 0



Tree canonisation
A polynomial-time algorithm

0 00 0👉



Tree canonisation
A polynomial-time algorithm



• if the systems have cycles of different length then return false


• let  and  be the sequences of trees of the two systems


• for each rotation  of  do 

• compare  and  elementwise in order


• if each pair of trees is isomorphic then return true


• return false

TA TB

R TB

R TA

Another polynomial-time algorithm

Connected dynamical system isomorphism



• A dynamical system is a multiset of connected 
dynamical systems (more about this later…)


• Checking multiset equality can be done naively 
with a quadratic number of element comparisons


• And we’ve seen that each comparison can be done 
in polynomial time


• This means that the semiring of dynamical systems 
is different from a more general semiring of graphs 
(nondeterministic dynamical systems), 
where the isomorphism problem is presumably hard

It can also be done in polynomial time
General dynamical system isomorphism



Even easier than that!
Dynamical system isomorphism

Planar Graph Isomorphism is in Log-Space

Samir Datta∗ , Nutan Limaye† , Prajakta Nimbhorkar† , Thomas Thierauf‡ , Fabian Wagner§

∗Chennai Mathematical Institute

Email: sdatta@cmi.ac.in

†The Institute of Mathematical Sciences, Chennai
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Abstract

Graph Isomorphism is the prime example of a compu-

tational problem with a wide difference between the best

known lower and upper bounds on its complexity. There is

a significant gap between extant lower and upper bounds for

planar graphs as well. We bridge the gap for this natural

and important special case by presenting an upper bound

that matches the known log-space hardness [JKMT03]. In

fact, we show the formally stronger result that planar graph

canonization is in log-space. This improves the previously

known upper bound of AC1 [MR91].

Our algorithm first constructs the biconnected component

tree of a connected planar graph and then refines each

biconnected component into a triconnected component tree.

The next step is to log-space reduce the biconnected planar

graph isomorphism and canonization problems to those

for 3-connected planar graphs, which are known to be

in log-space by [DLN08]. This is achieved by using the

above decomposition, and by making significant modifica-

tions to Lindell’s algorithm for tree canonization, along with

changes in the space complexity analysis.

The reduction from the connected case to the biconnected

case requires further new ideas, including a non-trivial case

analysis and a group theoretic lemma to bound the number

of automorphisms of a colored 3-connected planar graph.

This lemma is crucial for the reduction to work in log-space.

1. Introduction

The graph isomorphism problem GI consists of deciding

whether there is a bijection between the vertices of two

graphs, which preserves the adjacency relations. The wide

gap between the known lower and upper bounds has kept

alive the research interest in GI.

‡Supported by DFG grants Scho 302/7-2.

§Supported by DFG grants TO 200/2-2.

The problem is clearly in NP and by a group theoretic

proof also in SPP [AK06]. This is the current frontier of

our knowledge as far as upper bounds go. The inability to

give efficient algorithms for the problem would lead one

to believe that the problem is provably hard. NP-hardness

is precluded by a result that states if GI is NP-hard then

the polynomial time hierarchy collapses to the second level

[BHZ87], [Sch88]. What is more surprising is that not even

P-hardness is known for the problem. The best we know

is that GI is hard for DET [Tor04], the class of problems

NC1-reducible to the determinant, defined by Cook [Coo85].

While this enormous gap has motivated a study of iso-

morphism in general graphs, it has also induced research in

isomorphism restricted to special cases of graphs where this

gap can be reduced. Tournaments are an example of directed

graphs where the DET lower bound is preserved [Wag07],

while there is a quasi-polynomial time upper bound [BL83].

Trees are an example of graphs where the lower and

upper bounds match and are L [Lin92]. Note that for trees,

the problem’s complexity crucially depends on the input

encoding: if the trees are presented as strings then the lower

and upper bound are NC1 [MJT98], [Bus97]). Lindell’s log-

space result has been extended to partial 2-trees, also known

as generalized series-parallel graphs [ADK08]. Trees and
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In this paper we consider planar graph isomorphism and

settle its complexity by significantly improving the known

upper bound of AC1 . The result is particularly satisfying,
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Tarjan [HT74] extended this to general planar graphs, im-
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Even easier than that!
Dynamical system isomorphism
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Abstract

Graph Isomorphism is the prime example of a compu-

tational problem with a wide difference between the best

known lower and upper bounds on its complexity. There is

a significant gap between extant lower and upper bounds for

planar graphs as well. We bridge the gap for this natural

and important special case by presenting an upper bound

that matches the known log-space hardness [JKMT03]. In

fact, we show the formally stronger result that planar graph

canonization is in log-space. This improves the previously

known upper bound of AC1 [MR91].

Our algorithm first constructs the biconnected component

tree of a connected planar graph and then refines each

biconnected component into a triconnected component tree.

The next step is to log-space reduce the biconnected planar

graph isomorphism and canonization problems to those

for 3-connected planar graphs, which are known to be

in log-space by [DLN08]. This is achieved by using the

above decomposition, and by making significant modifica-

tions to Lindell’s algorithm for tree canonization, along with

changes in the space complexity analysis.

The reduction from the connected case to the biconnected

case requires further new ideas, including a non-trivial case

analysis and a group theoretic lemma to bound the number

of automorphisms of a colored 3-connected planar graph.

This lemma is crucial for the reduction to work in log-space.

1. Introduction

The graph isomorphism problem GI consists of deciding

whether there is a bijection between the vertices of two

graphs, which preserves the adjacency relations. The wide

gap between the known lower and upper bounds has kept

alive the research interest in GI.
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§Supported by DFG grants TO 200/2-2.

The problem is clearly in NP and by a group theoretic

proof also in SPP [AK06]. This is the current frontier of

our knowledge as far as upper bounds go. The inability to

give efficient algorithms for the problem would lead one
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Systems of linear equations 
with constant RHS are 

-completeNP



• Given a 3CNF Boolean formula , is there a satisfying 
assignment such that exactly one literal per clause is true?


• For each variable  of  we have one equation , 
forcing one between  and  to be , and the other to be 


• For each clause, for instance , we have one 
equation , which forces exactly one variable to 


• These are all linear, constant-RHS equations over  
(actually  ), and its solutions are the same as the satisfying 
assignments of  with one true literal per clause

φ

x φ X + X′ = 1
X X′ 1 0

(x ∨ ¬y ∨ z)
X + Y′ + Z = 1 1

D[ ⃗X ]
ℕ[ ⃗X ]

φ

By reduction from One-in-three-3SAT
-hardness of linear systemsNP



A single linear, 
constant-RHS equation 
is -completeNP



• Let  be the previous system 
of equations, with 


• Recall that  is a -semimodule with basis all connected systems


• Take any  easy-to-compute, linearly independent systems 
, for instance





• Then the equation  
is a linear equation over  having the same solutions 
as the original system

p1( ⃗X ) = 1,…, pn( ⃗X ) = 1
pi ∈ ℕ[ ⃗X ]

D ℕ

n
e1, …en ∈ D

e1 = e2 = e3 = e4 = ⋯

e1p1( ⃗X ) + ⋯+enpn( ⃗X ) = e1+⋯+en
D[ ⃗X ]

Several  linear equations to one  equationℕ[ ⃗X ] D[ ⃗X ]

Reducing the system of equations to one



A more abstract view



• Since the complexity of solving equations over dynamical 
systems is too high, we want to try finding a suitable algebraic 
abstraction


• For instance, another semiring  with a surjective 
homomorphism  that does not erase too much 
information


• Hoping that polynomial equations over  might be easier

R
D → R

R[ ⃗X ]

In the hope of making equations easier
Abstracting away from some details



Profiles of dynamical 
systems



• Given a dynamical system  define the infinite sequence





• Clearly, the sequence is decreasing and ultimately constant  
for finite systems, since sooner or later 


• So we can halt the sequence as soon as it stops decreasing


• Her  is the set of periodic states, and the minimum  
is the distance of the state farthest away from a limit cycle

(A, f )

prof(A) = ( |A | , | f(A) | , | f2(A) | , …) = ( | f n(A) | : n ∈ ℕ)

f n(A) = f n+1(A)

f n(A) n

Profile of a dynamical system
Definition



• We have 


• But , so 
 elementwise


• We have 


• But , so 
 elementwise


• Then the set of profiles inherits a semiring structure from 

prof(A + B) = ( | ( f + g)n(A ⊎ B) | : n ∈ ℕ)

( f + g)(A ⊎ B) = f(A) ⊎ g(B)
prof(A + B) = prof(A) + prof(B)

prof(A × B) = ( | ( f × g)n(A × B) | : n ∈ ℕ)

( f × g)(A × B) = f(A) × g(B)
prof(A × B) = prof(A) × prof(B)

ℕ

Let  and  be dynamical systems(A, f ) (B, g)
The semiring  of profilesP



• Most algebraic properties remain the same: multiple 
factorisations, most elements are irreducible


• The equations are, in general, algorithmically unsolvable


• They become solvable with a constant RHS


• But they remain -complete, even for a single linear equationNP

Algebraic, computability and complexity questions
Profiles of dynamical systems



Open problems



• Are there prime elements , that is, whenever  divides  
it divides either  or ? What do they represent?


• We know exactly zero prime elements 🤷


• Does it make any sense to adjoin the additive inverses 
in order to obtain a ring?


• Think about imaginary numbers, using them in intermediary 
computation steps, but discarding any imaginary solutions


• Is it useful to find nondeterministic dynamical system  
(i.e., arbitrary graph) solutions to equations?


• Semirings of infinite discrete-time dynamical systems

P P AB
A B

Algebraic ones
Open problems



• Find larger classes of solvable equations, e.g., by number 
of variables or degree of the polynomials


• Do we obtain the same results as for natural numbers?


• The semiring of computably infinite dynamical systems


• Discover classes of equations solvable efficiently


• Hard for systems in succinct form


• Find out if there exist decidable equations harder than 


• It would feel strange to jump from  to undecidable

NP

NP

Computability and complexity
Open problems



• Investigate the complexity of problems where a succinct 
representation of dynamical system is given as input


• Let  be a dynamical system, and suppose that 


• A circuit encoding for  is a pair of circuits  where


•  is the characteristic function of 


•  is such that  if 


• Easy to construct (even uniformly) circuits for  and 

(A, f ) A ⊆ {0,1}n

(A, f ) (CA, Cf )

CA : {0,1}n → {0,1} A

Cf : {0,1}n → {0,1}n Cf(x) = f(x) x ∈ A

A + B A × B

Complexity of succinct representations
Open problems
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Thanks for your attention! 
Merci de votre attention !



Any questions?


