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Structure &° vs behaviour %

e \What are the consequences of structural restrictions
on the behaviour of RS?

e Example: minimal RS cannot compute all result functions

e But, for each RS A there exists a minimal RS ‘B
such that reszX(T) = resz2K(T) for all k € N and state T of 4



Positive dependency graph &’

e \ertices = set of reactions A

* There is an oriented edge a — b iff at least
one product of reaction a is a reactant of reaction b



Positive dependency graph ¢
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Self-sustaining cycle

A path in the (positive) dependency graph
such that for each edge a — b we have:

e Reaction a produces all reactants of b: Ry € Pa

e Reaction a doesn’t produce any inhibitor for b: Pan lp = @
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Self-sustaining cycle
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Non self-inhibiting reactions ¢’

A set of reactions {a1, az, ..., an} such that no reaction
produces inhibitors for any other reaction in the set:
i n Pj= @ for all i, | belonging to the set

Otherwise, the set is called self-inhibiting



Self-sustaining but also
self-inhibiting cycle ¢
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Simple cyclical
dependencies €9



RS with a single self-sustaining,
non self-inhibiting dependency cycle
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RS with a single self-sustaining,
non self-inhibiting dependency cycle
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RS with a single self-sustaining,
non self-inhibiting dependency cycle




RS with a single self-sustaining,
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RS with a single self-sustaining,
non self-inhibiting dependency cycle




RS with a single self-sustaining,
non self-inhibiting dependency cycle
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RS with a single self-sustaining,
non self-inhibiting dependency cycle



RS with a single self-sustaining,
non self-inhibiting dependency cycle
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Rotations and cycles

The rotations of active reactions along the (unique) cycle in
the dependency graph ¢” starting from a given configuration

correspond to transitions in the graph of the dynamics



2 Theorem

«¥ IF the dependency graph of a RS consists only one
self-sustaining, non-self-inhibiting cycle of length n

%, THEN the dynamics of the RS only contains

cycles of length dividing n, and there is at least one
such cycle for each divisor of n
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Chains of
dependency ¢¢



Chains %

~= shared

A set of one or more cycles pairwise sharing a point



Z° Lemma

«” IF the dependency graph of a RS contains a chain

of two self-sustaining, non self-inhibiting cycles
of length m and n

, THEN when starting from a configuration where at least

one reaction involved in the cycles is enabled, eventually all
the reactions will be enabled once every gcd(m, n) steps



2 Lemma in action
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2 Lemma in action
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2 Lemma in action
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All reactions are enabled every 3 = gcd(3, 6) steps



Flower-shaped
dependencies ©
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Flowers ‘@

A set of one or more cycles all sharing a single point



«¥ IF the dependency graph of a RS consists only

of a flower of self-sustaining, non-self-inhibiting cycles
(petals) with at lest of them of coprime lengths

%, THEN the RS has exactly two fixed points
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“ Theorem in action
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« Theorem in action
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“ Theorem In action

All reactions enabled every 1 = gcd(3, 4) step! Saturation!



# Theorem in action

e When all reactions are always enabled
the products are always the same: T = |J{Pa: a € A}

e Thus the RS enters a nonempty fixed point: resy(T) =T

e The second fixed point is by definition the empty state @



Chain-shaped
dependencies ¢



2% Theorem

«” IF the dependency graph of a RS consists only

of a chain of self-sustaining, non-self-inhibiting cycles
containing two cycles of coprime lengths,

%, THEN the RS has exactly two fixed points



%¢ Theorem in action
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9% Theorem in action
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9% Theorem in action




Conclusions



Summary

Behaviour 3% of RS having a dependency graph ¢”
consisting of self-sustaining, non-self-inhibiting cycles:

e with a single cycle of length n ¢, the dynamics of the RS
contains only cycles of length dividing n =,

o with a chain or flower with two cycles of coprime
length ¢”, the RS has exactly two fixed points X,



Future work

e Does restricting the dependency graphs to cycles, chains
and flowers ¢ reduce the complexity of decision
problems related to the dynamics? .~ (e.g., fixed points,
reachability)

* |nvestigate the relationship with Boolean automata
networks and their interaction graphs i

e Investigate more sophisticated dependency graphs &’
(e.q., pre-periods, multiple intersections between cycles)



Dziekuje za uwage!
Thanks for your attention!




