Shapes of dependencies in reaction systems

Luca Manzoni • Antonio E. Porreca / Grzegorz Rozenberg

Università degli Studi di Milano-Bicocca 💶 Aix-Marseille Université & Laboratoire d'Informatique et Systèmes II Leiden University & University of Colorado Boulder

- What are the consequences of structural restrictions on the behaviour of RS?
- Example: minimal RS cannot compute all result functions
- But, for each RS \mathcal{A} there exists a minimal RS \mathcal{B} such that $\operatorname{res}_{\mathcal{A}}{}^{k}(T) = \operatorname{res}_{\mathcal{B}}{}^{2k}(T)$ for all $k \in \mathbb{N}$ and state T of \mathcal{A}

Positive dependency graph S

- Vertices = set of reactions A
- There is an oriented edge a → b iff at least one product of reaction a is a reactant of reaction b

Positive dependency graph

Self-sustaining cycle 🎲

A path in the (positive) dependency graph such that for each edge $a \rightarrow b$ we have:

- Reaction a produces all reactants of b: $R_b \subseteq P_a$
- Reaction a doesn't produce any inhibitor for b: $P_a \cap I_b = \emptyset$

Self-sustaining cycle 🎲

Non self-inhibiting reactions S

A set of reactions {a₁, a₂, ..., a_n} such that no reaction produces inhibitors for any other reaction in the set: $I_i \cap P_j = \emptyset$ for all i, j belonging to the set

Otherwise, the set is called self-inhibiting

Self-sustaining but also self-inhibiting cycle

Simple cyclical dependencies 🐼

 P_0

 P_3

 \mathbf{P}_1

P₂

Rotations and cycles

The rotations of active reactions along the (unique) cycle in the dependency graph *starting* from a given configuration correspond to transitions in the graph of the dynamics \gtrsim

IF the dependency graph of a RS consists only one self-sustaining, non-self-inhibiting cycle of length n

THEN the dynamics of the RS only contains cycles of length dividing n, and there is at least one such cycle for each divisor of n

Length of the cycles

Chains of dependency

A set of one or more cycles pairwise sharing a point

IF the dependency graph of a RS contains a chain of two self-sustaining, non self-inhibiting cycles of length m and n

THEN when starting from a configuration where at least one reaction involved in the cycles is enabled, eventually all the reactions will be enabled once every gcd(m, n) steps

() = 5

All reactions are enabled every 3 = gcd(3, 6) steps

Flower-shaped dependencies

A set of one or more cycles all sharing a single point

IF the dependency graph of a RS consists only of a flower of self-sustaining, non-self-inhibiting cycles (petals) with at lest of them of coprime lengths

THEN the RS has exactly two fixed points

All reactions enabled every 1 = gcd(3, 4) step! Saturation!

- When all reactions are always enabled the products are always the same: T = ∪ {P_a : a ∈ A}
- Thus the RS enters a nonempty fixed point: $res_{\mathcal{A}}(T) = T$
- The second fixed point is by definition the empty state Ø

Chain-shaped dependencies

IF the dependency graph of a RS consists only of a chain of self-sustaining, non-self-inhibiting cycles containing two cycles of coprime lengths,

A THEN the RS has exactly two fixed points

Conclusions

Summary

Behaviour A of RS having a dependency graph A consisting of self-sustaining, non-self-inhibiting cycles:

- with a single cycle of length n \$\vert^n\$, the dynamics of the RS contains only cycles of length dividing n \$\vert^n\$.
- with a chain or flower with two cycles of coprime length *I*, the RS has exactly two fixed points

Future work

- Does restricting the dependency graphs to cycles, chains and flowers i reduce the complexity of decision problems related to the dynamics? A (e.g., fixed points, reachability)
- Investigate the relationship with Boolean automata networks and their interaction graphs s
- Investigate more sophisticated dependency graphs (e.g., pre-periods, multiple intersections between cycles)

Dziękuje za uwagę! Thanks for your attention!

