Solving a special case of the P conjecture using dependency graphs with dissolution

Alberto Leporati · Luca Manzoni · Giancarlo Mauri Antonio E. Porreca · Claudio Zandron

Università degli Studi di Milano-Bicocca

18th Conference on Membrane Computing 27 July 2017, Bradford, UK P systems with active membranes without charges

$$[a o bc]_1$$
 $[f]_1 o []_1 f$ $d[]_1 o [d]_1$ $[c]_1 o [f]_1 [g]_1$ $[f]_0 o []_0 ext{ yes}$ $[d]_1 o []_1 d$

The P conjecture

[I]t was shown that [...] for solving **NP**-complete problems [in polynomial time] two charges are enough.

Can the polarizations be completely avoided? [...] The feeling is that this is not possible

$$[a \rightarrow bc]_1$$

$$[f]_1 \rightarrow [\,]_1 f$$

$$d[]_1 \rightarrow [d]_1$$

$$[c]_1 \to [f]_1 [g]_1$$

$$[f]_0 \rightarrow []_0$$
 yes

$$[d]_1 \rightarrow []_1 d$$

$$[a
ightarrow bc]_1$$

$$[f]_1 \rightarrow [\,]_1 f$$

$$d[]_1 \rightarrow [d]_1$$

$$[c]_1 \to [f]_1 [g]_1$$

$$[f]_0 \rightarrow []_0$$
 yes

$$[d]_1 \rightarrow []_1 d$$

$$[a o bc]_1$$
 $[f]_1 o []_1 f$ $[f]_1 o [d]_1$ $[c]_1 o [f]_1 [g]_1$ $[f]_0 o []_0 ext{ yes}$ $[d]_1 o []_1 d$

Dependency graphs can be constructed and explored in polynomial time

Dependency graphs can be constructed and explored in polynomial time

The P conjecture is true for P systems without dissolution rules

Dependency graphs can be constructed and explored in polynomial time

The P conjecture is true for P systems without dissolution rules

And false for those with both non-elementary division and dissolution (they reach **PSPACE**)

In P systems without dissolution the result actually depends on one object

In P systems without dissolution the result actually depends on one object

Consider a restricted version of P systems with dissolution:

- monodirectional
- shallow
- deterministic

$$C_0 \longrightarrow C_1 \longrightarrow C_2 \longrightarrow C_t$$

for each computation

$$C_0 \longrightarrow C_1 \longrightarrow C_2 \longrightarrow C_t$$

there exists a sequence of small configurations

$$\begin{aligned}
&[[a b]_k]_h & [[a]_k]_h \\
&[a]_h & \text{yes} & \text{no}
\end{aligned}$$

and there exists another sequence of configurations

such that the diagram "commutes" (same result)

Generalised dependency graphs

$$[a
ightarrow bc]_1 \qquad [d]_0
ightarrow []_0 ext{ yes} \qquad [e]_1
ightarrow e \qquad [f]_1
ightarrow [g]_1 [h]_1 \ [b
ightarrow d]_1 \qquad [b]_0
ightarrow []_0 ext{ no} \qquad [g]_1
ightarrow g \ [c
ightarrow e]_1 \qquad [d]_1
ightarrow d \qquad [h]_1
ightarrow h$$

$$egin{aligned} [a
ightharpooldown bc]_1 & [d]_0
ightharpooldown [g]_1
ightharpooldown e & [f]_1
ightharpoold$$

$$[a
ightarrow bc]_1 \qquad [d]_0
ightarrow []_0 ext{ yes} \qquad [e]_1
ightarrow e \ [b
ightarrow d]_1 \qquad [b]_0
ightarrow []_0 ext{ no} \qquad [g]_1
ightarrow g \ [c
ightarrow e]_1 \qquad [d]_1
ightarrow d \qquad [h]_1
ightarrow h$$

$$[a
ightarrow bc]_1 \qquad [d]_0
ightarrow []_0 ext{ yes} \qquad [e]_1
ightarrow e \qquad [f]_1$$
 $[b
ightarrow d]_1 \qquad [b]_0
ightarrow []_0 ext{ no } \qquad [g]_1
ightarrow g$ $[c
ightarrow e]_1 \qquad [d]_1
ightarrow d \qquad [h]_1
ightarrow h$

e is a troublemaker for $[[a]_1]_0$

If C is untroubled and $C \to D$, then D is untroubled

If $\mathcal C$ is untroubled and $\mathcal C \to \mathcal D$, then $\mathcal D$ is untroubled

If \mathcal{D} is untroubled and $\mathcal{C} \to \mathcal{D}$, then \mathcal{C} is untroubled

If $\mathcal C$ is untroubled and $\mathcal C \to \mathcal D$, then $\mathcal D$ is untroubled

If \mathcal{D} is untroubled and $\mathcal{C} \to \mathcal{D}$, then \mathcal{C} is untroubled

Theorem. A P system accepts iff its initial configuration is untroubled

The troublemakers are computed by depth-first search of the (transposed) dependency graph

The troublemakers are computed by depth-first search of the (transposed) dependency graph

Untroubledness of the initial configuration of the P system is checked by looking at the vertices it contains

The troublemakers are computed by depth-first search of the (transposed) dependency graph

Untroubledness of the initial configuration of the P system is checked by looking at the vertices it contains

Theorem. We can check in polynomial time if the P system accepts The monodirectional, shallow, deterministic P conjecture is true

The monodirectional, shallow, deterministic P conjecture is true

$$\mathsf{DPMC}_{\mathcal{D}}^{[\star]} = \mathsf{P} = \mathsf{DMC}_{\mathcal{D}}^{[\star]}$$

Prove the result for confluent (not just deterministic) P systems

Prove the result for confluent (not just deterministic) P systems

Prove the result for P systems with deeper membrane structures

Prove the result for confluent (not just deterministic) P systems

Prove the result for P systems with deeper membrane structures

Prove the result for bidirectional P systems (no idea if we can do this)

Prove the result for confluent (not just deterministic) P systems

Prove the result for P systems with deeper membrane structures

Prove the result for bidirectional P systems (no idea if we can do this)

Use generalised dependency graphs for other variants of P systems to prove **P** upper bound or find "borderlines" for efficiency

Thanks for your attention!

Grazie per l'attenzione!

Any questions?