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Introduction

I Some variants of P systems solve
classically intractable problems in polynomial time

I E.g., active membranes, tissues with cell division
I The key is trading space for time:

generate exponentially many membranes
(processing units) working in a maximally parallel way
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Motivation

I The space/time trade-off was always described
in a rather informal way

I What exactly is space in a P system?
I We want to formalise the notion of space complexity,

in order to be able to prove results about it
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One-sentence summary of the current results

Polynomial space
Turing machines

equal

Polynomial space
P systems

with active membranes1

1With charges, and as long as we have at least communication rules 4/24



Outline

A space complexity measure for P systems

Space complexity classes

PSPACE upper bound

Solving PSPACE-complete problems

Open problems
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A space complexity measure for P systems2

I The size of a configuration is #membranes + #objects
I The space of a computation is the sup of the sizes of its

configurations
I The space required by a P system is the sup of the space

requirements of all its computations
I A family of P systems Π works in space f if each

P system Πx ∈ Π does not require more than f(|x |) space

2A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, Introducing a space complexity
measure for P systems, International Journal of Computers, Communications
& Control 4(3), 301–310, 2009 6/24



Rationale for the definition

I We want a simple but “realistic” notion of space
I Each membrane and molecule requires

some amount of physical space
I The exact amount is not important,

as long as it is polynomial wrt the input size
(and normally it is, because of uniformity)

I So we just postulate that each molecule has unit size
I Membranes are just slightly larger than their contents,

so we give them unit size in addition to that
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Space complexity classes for P systems

I Languages decided by [non]confluent [semi]uniform
families of P systems of type D (e.g., AM) in space f

[N]MCSPACE[?]
D

(f)

I Languages decided by [non]confluent [semi]uniform
families of P systems of type D in polynomial space

[N]PMCSPACE[?]
D

=
⋃

p poly

[N]MCSPACE[?]
D

(p)
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Simulating a nonconfluent polyspace P system3

A For each rule in R, assign to it a nondeterministically
chosen set of membranes and objects
to which the rule should be applied

B Check if the assignment of membranes and objects
to rules is indeed maximally parallel; if this is not
the case, abort the simulation by rejecting

C Apply the rules selected in step A,
starting from the elementary membranes
and going up towards the skin membrane

D If either yes or no were sent out from the skin membrane
in step C, then halt and accept or reject accordingly;
otherwise, jump to step A

3A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with active membranes
working in polynomial space, International Journal of Foundations of Computer
Science 22(1), 65–73, 2011 9/24



Choosing the rules to be applied (step A)

A1 Let R ′ be the set of currently unused rules; set R ′ ← R

A2 If R ′ = ∅ then go to step B. Otherwise, pick a rule r ∈ R ′

A3 If r = [a → w]αh then, for each membrane of the form [ ]αh ,
nondeterministically choose an amount k of copies of object a
to be rewritten into w; this amount can be anywhere from 0
to the multiplicity of a in that particular membrane.
Subtract k from the number of available copies of a in h

A4 If r = a [ ]αh → [b]βh then, for each available membrane
of the form [ ]αh having an available instance of a in the region
immediately outside, nondeterministically choose whether to apply r
and, in that case, assign those particular instances of a and h to r
making them unavailable

[. . .]

A7 Set R ′ ← R ′ − {r} and go back to step A2
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PSPACE upper bound

Theorem
A nonconfluent P system with active membranes,
running in space S and having a description of length m
can be simulated nondeterministically using space O(S log m)

Proof.
We only need to store the current configuration
and auxiliary data not larger than that �

Corollary
NPMCSPACE?

AM ⊆ PSPACE �
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Solving Q3SAT in polynomial space4

I Design a uniform family of simple programs
solving Q3SAT in polynomial space

I Compile the programs into a uniform family
of register machines working in polynomial space

I Simulate them with a uniform family of P systems
working in polynomial space (using only communication)

4A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with active membranes:
Trading time for space, Natural Computing, to appear (available online at
http://j.mp/PQ3SAT) 12/24

http://j.mp/PQ3SAT


Encoding Q3SAT instances

I There are (m
3) sets of 3 variables out of m

I Each variable can be positive or negated (23 ways)
I Hence there are n = 8(m

3) possible clauses
I We can represent a 3CNF formula by an n-bit string
I Checking well-formedness and recovering m from n

are easy (polytime)
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Example Boolean formula

I If we have 3 variables, the number of clauses is 8(3
3) = 8

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ ¬x3 x1 ∨ ¬x2 ∨ x3

x1 ∨ ¬x2 ∨ ¬x3 ¬x1 ∨ x2 ∨ x3 ¬x1 ∨ x2 ∨ ¬x3

¬x1 ∨ ¬x2 ∨ x3 ¬x1 ∨ ¬x2 ∨ ¬x3

I Then the formula

ϕ = (x1 ∨ ¬x2 ∨ x3)︸             ︷︷             ︸
3rd

∧ (¬x1 ∨ x2 ∨ ¬x3)︸               ︷︷               ︸
6th

∧ (¬x1 ∨ ¬x2 ∨ x3)︸               ︷︷               ︸
7th

is encoded as

〈ϕ〉 = 0010 0110
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Evaluating ϕ(t1, . . . , tm)

if c1 then
v1 := t1 or t2 or t3

else
v1 := 1

end;
[...]
if cn then
vn := not tm-2 or not tm-1 or not tm

else
vn := 1

end;
r := v1 and v2 · · · and vn
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Evaluating ∀x1∃x2 · · ·Qmxmϕ(x1, . . . , xm)

r1 := 1;
for t1 := 0 to 1 do
r2 := 0;
for t2 := 0 to 1 do
[...]
rm := 1/0;
for tm := 0 to 1 do
r := phi(t1, ..., tm);
rm := rm and/or r

end
[...]
r2 := r2 or r3

end;
r1 := r1 and r2

end;
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Compiling programs into register machines

I Just an example:

for x := 0 to 1 do <body> end

I This statement is compiled as

i1: dec(x), i1, i2
i2: <body>
i3: dec(x), i5, i4
i4: inc(x), i2
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P systems simulating register machines

r1 r2 r3 r4 z

one membrane
per register

aaa
aaa
aa

pi

aaaaaa
aaaaaaaa

aaaaaa

aa

the number of a’s is the
value of the register

h

0
00000

“spare” a’s to perform
increment operations

program counter object

“waiting”
membrane
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Simulating the instructions

I “i: inc(r), j” becomes

pi [ ]0
r → [p′i ]

+
r a [ ]+r → [a]0

r [p′i ]
0
r → [ ]0

r pj

I “i: dec(r), j, k” becomes

pi [ ]0
r → [p′i ]

−
r [a]−r → [ ]0

r a

[p′i ]
α
r → [ ]αr p′i p′i [ ]0

z → [p′i ]
0
z

[p′i ]
0
z → [ ]0

z p′′i p′′i [ ]αr → [p′′i ]αr

[p′′i ]0
r → [ ]0

r pj [p′′i ]−r → [ ]0
r pk
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PSPACE lower bound

Theorem
If a problem can be solved in polynomial space
by a uniform family of simple programs, then it can be solved
in polynomial space by a uniform family of P systems
with active membranes using only communication

Proof.
Just put enough copies of a inside the outermost
membrane �

Corollary
PSPACE ⊆ PMCSPACEAM(−evo,−diss,−div) �
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Characterising polynomial space

Theorem
If D ⊆ AM and D includes communication rules, then

[N]PMCSPACE[?]
D

= PSPACE

Proof.
We proved PSPACE ⊆ PMCSPACEAM(−evo,−diss,−div)

and NPMCSPACE?
AM ⊆ PSPACE;

everything else is in between �
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Open problems

I Investigate logspace families of P systems
I Requires a weaker uniformity condition (AC0?)5

otherwise they trivially characterise P
I Conjecture: they characterise L

I And also exponential space families of P systems
I We already have an EXPSPACE upper bound
I As for the lower bound, register machines

don’t seem to work here because we use
a unary encoding to simulate them

I No conjecture here!

5See N. Murphy, D. Woods, The computational power of membrane systems under tight
uniformity conditions, Natural Computing, to appear (available online at
http://j.mp/PUniformity) 22/24

http://j.mp/PUniformity
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