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Introduction

» Some variants of P systems solve
classically intractable problems in polynomial time

» E.g., active membranes, tissues with cell division

» The key is trading space for time:
generate exponentially many membranes
(processing units) working in a maximally parallel way

2/24



Motivation

» The space/time trade-off was always described
in a rather informal way

» What exactly is space in a P system?

» We want to formalise the notion of space complexity,
in order to be able to prove results about it
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One-sentence summary of the current results

Polynomial space
Turing machines

equal

Polynomial space
P systems
with active membranes'

TWith charges, and as long as we have at least communication rules 4/24



Outline

A space complexity measure for P systems
Space complexity classes

PSPACE upper bound

Solving PSPACE-complete problems

Open problems
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A space complexity measure for P systems?

v

The size of a configuration is #membranes + #objects

The space of a computation is the sup of the sizes of its
configurations

The space required by a P system is the sup of the space
requirements of all its computations

A family of P systems N works in space f if each

P system I, € N does not require more than f(|x|) space

v

v

v

2A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, Introducing a space complexity
measure for P systems, International Journal of Computers, Communications
& Control 4(3), 301-310, 2009 6/24



Rationale for the definition

» We want a simple but “realistic” notion of space

» Each membrane and molecule requires
some amount of physical space

» The exact amount is not important,
as long as it is polynomial wrt the input size
(and normally it is, because of uniformity)

» So we just postulate that each molecule has unit size

» Membranes are just slightly larger than their contents,
so we give them unit size in addition to that
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Space complexity classes for P systems

» Languages decided by [non]confluent [semi]uniform
families of P systems of type D (e.g., AM) in space f

[NJ]MCSPACE(f)

» Languages decided by [non]confluent [semi]uniform
families of P systems of type D in polynomial space

[NJPMCSPACE} = | ] [N]MCSPACE}(p)

p poly
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Simulating a nonconfluent polyspace P system?®

A For each rule in R, assign to it a nondeterministically
chosen set of membranes and objects
to which the rule should be applied

B Check if the assignment of membranes and objects
to rules is indeed maximally parallel; if this is not
the case, abort the simulation by rejecting

C Apply the rules selected in step A,
starting from the elementary membranes
and going up towards the skin membrane

D If either yes or no were sent out from the skin membrane

in step C, then halt and accept or reject accordingly;
otherwise, jump to step A

SA.E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with active membranes
working in polynomial space, International Journal of Foundations of Computer
Science 22(1), 6573, 2011 9/24



Choosing the rules to be applied (step A)

A Let R’ be the set of currently unused rules; set R” «— R
A, If R” = 0 then go to step B. Otherwise, pick arule r € R’

Az Ifr = [a — w]¢ then, for each membrane of the form [ ]¢,
nondeterministically choose an amount k of copies of object a
to be rewritten into w; this amount can be anywhere from 0
to the multiplicity of a in that particular membrane.
Subtract k from the number of available copies of a in h

Ay lfr=al]} - [b]’; then, for each available membrane
of the form [ ]¢ having an available instance of a in the region
immediately outside, nondeterministically choose whether to apply r
and, in that case, assign those particular instances of aand hto r
making them unavailable

[...]
A; Set R’ « R’ —{r} and go back to step A,
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PSPACE upper bound

Theorem

A nonconfluent P system with active membranes,

running in space S and having a description of length m

can be simulated nondeterministically using space O(S log m)

Proof.

We only need to store the current configuration

and auxiliary data not larger than that O
Corollary

NPMCSPACE;,,, < PSPACE O
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Solving Q3SAT in polynomial space*

» Design a uniform family of simple programs
solving Q3SAT in polynomial space

» Compile the programs into a uniform family
of register machines working in polynomial space

» Simulate them with a uniform family of P systems
working in polynomial space (using only communication)

4A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with active membranes:
Trading time for space, Natural Computing, to appear (available online at

http://j.mp/PQ3SAT) 12/24
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Encoding Q3SAT instances

v

There are (7]) sets of 3 variables out of m

Each variable can be positive or negated (2° ways)
Hence there are n = 8(7) possible clauses

We can represent a 3CNF formula by an n-bit string

Checking well-formedness and recovering m from n
are easy (polytime)

v

v

v

v
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Example Boolean formula

» If we have 3 variables, the number of clauses is 8(2) =8

X1V XoV X3 X1V Xo V —1X3 X1V Xo V X3
X1V aXoV-aXg X1V XoV X =X1 V Xo V 11Xz
X1 V-aXoVXg =Xy VaXe V—Xg

» Then the formula

Y= (X1 V =X V X3) A (—|X1 V Xo V —|X3) A (—|X1 V =Xo V X3)

3rd 6th 7th

is encoded as

{¢) = 0010 0110
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Evaluating ¢(ti, ..., tn)

if c; then

v; := t; or t; or t3
else
v, =1
end;
[...]
if c, then
V, := not t,, or not t,; or not t,
else
vp =1
end;
r :=v; and v, --- and v,
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Evaluating Vx;3xz - - - QmXme(X1, . .

r; := 1;
for t; :=
r, := 0;
for t, := 0 to 1 do
[...]

® to 1 do

r, := 1/0;
for t, := 0 to 1 do
r := phi(ty, ..., tw;
r, := r, and/or r
end
[...]
r, := T, Or r3
end;
r; :=r; and r,

end;

. s Xm)
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Compiling programs into register machines

» Just an example:

for x := 0 to 1 do <body> end

» This statement is compiled as

il:
iz:
i3:
i4:

pEc(x), i;, i,

<body>
DEC(X), 15, 14
iNc(x), i,
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P systems simulating register machines

one membrane the number of a’s is the “waiting”
per register value of the regi\ster membrane

0 0 0
aaa
aa
Iy ra I3
aaaaaa
aaaaaaaa
aaaaaa

“spare” a’s to perform

. ' program counter object
increment operations
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Simulating the instructions

» “i: 1Inc(r), j” becomes
pilll=Pl7  alli—1[a) [PR—-I11p

» “i: pEc(r), j, k”becomes

pi (17 = [Py [a]; =[]} a
(P17 = [17 p; pi 12— [Pl
[p12 = [13 P’ p/L1F — [p1?
[pIT? = [17 by (0], = 117 P
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PSPACE lower bound

Theorem

If a problem can be solved in polynomial space

by a uniform family of simple programs, then it can be solved
in polynomial space by a uniform family of P systems

with active membranes using only communication

Proof.

Just put enough copies of a inside the outermost

membrane o
Corollary

PSPACE C PMCSPACE 7 ((—evo,~diss,~div) O

20/24



Characterising polynomial space

Theorem
If D C AM and D includes communication rules, then

[NJPMCSPACE!}! — PSPACE

Proof.

We proved PSPACE C PMCSPACEﬂM(—eVO,—diSS,—div)

and NPMCSPACE?, ,, € PSPACE;

everything else is in between O
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Open problems

» Investigate logspace families of P systems
~ Requires a weaker uniformity condition (AC°?)3
otherwise they trivially characterise P
» Conjecture: they characterise L
» And also exponential space families of P systems
» We already have an EXPSPACE upper bound
» As for the lower bound, register machines
don’t seem to work here because we use

a unary encoding to simulate them
» No conjecture here!

5See N. Murphy, D. Woods, The computational power of membrane systems under tight
uniformity conditions, Natural Computing, to appear (available online at
http://j.mp/PUniformity) 22/24
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