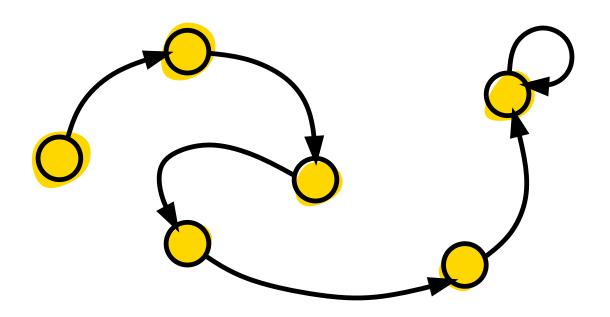
# State sequences of interactive processes of reaction systems

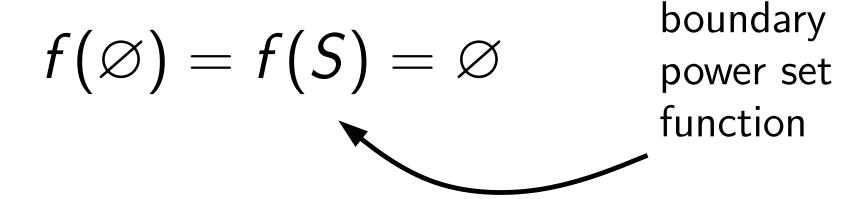


Luca Manzoni, Antonio E. Porreca {luca.manzoni, porreca}@disco.unimib.it

Note: all reaction systems in this talk are without context

$$f: 2^S \rightarrow 2^S$$

power set function



#### Theorem

 $f = \operatorname{res}_{\mathcal{A}}$  for some  $\mathcal{A}$ 



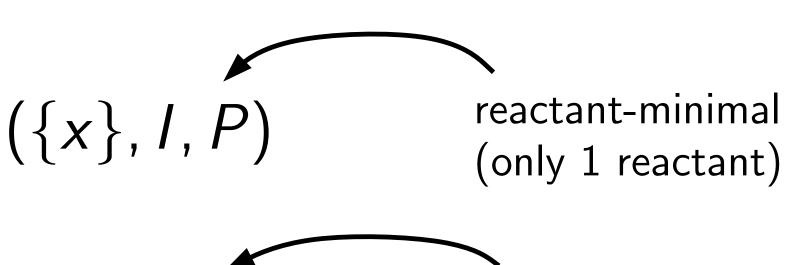
f is a boundary power set function

#### Proof idea

$$f(X) = Y$$

$$\downarrow \downarrow$$

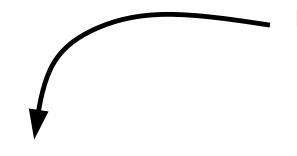
$$(X, S - X, Y)$$



$$(R, \{y\}, P)$$
 inhibitor-minimal (only 1 inhibitor)

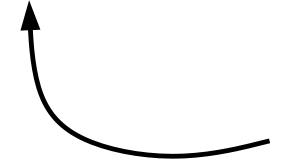
$$(\{x\}, \{y\}, P)$$
 resource-minimal (only 1 reactant and 1 inhibitor)

#### union-subadditive



$$f(X \cup Y) \subseteq f(X) \cup f(Y)$$

$$f(X \cap Y) \subseteq f(X) \cup f(Y)$$



intersection-subadditive

#### Examples

$$\operatorname{res}_{\mathcal{A}}(\{a\} \cup \{b\}) = \operatorname{res}_{\mathcal{A}}(\{a,b\}) = \{a,b\}$$

$$\uparrow \hookrightarrow \operatorname{res}_{\mathcal{A}}(\{a\}) \cup \operatorname{res}_{\mathcal{A}}(\{b\}) = \emptyset$$

#### Examples

$$\operatorname{res}_{\mathcal{A}}(\{a, b, c\} \cap \{a, b, d\}) = \operatorname{res}_{\mathcal{A}}(\{a, b\}) = \{a, b\}$$

$$\operatorname{res}_{\mathcal{A}}(\{a, b, c\}) \cup \operatorname{res}_{\mathcal{A}}(\{a, b, d\}) = \emptyset$$

#### **Theorem**

f is union-subadditive



 $f = \operatorname{res}_{\mathcal{A}}$  for some reactant-minimal  $\mathcal{A}$ 

f is intersection-subadditive



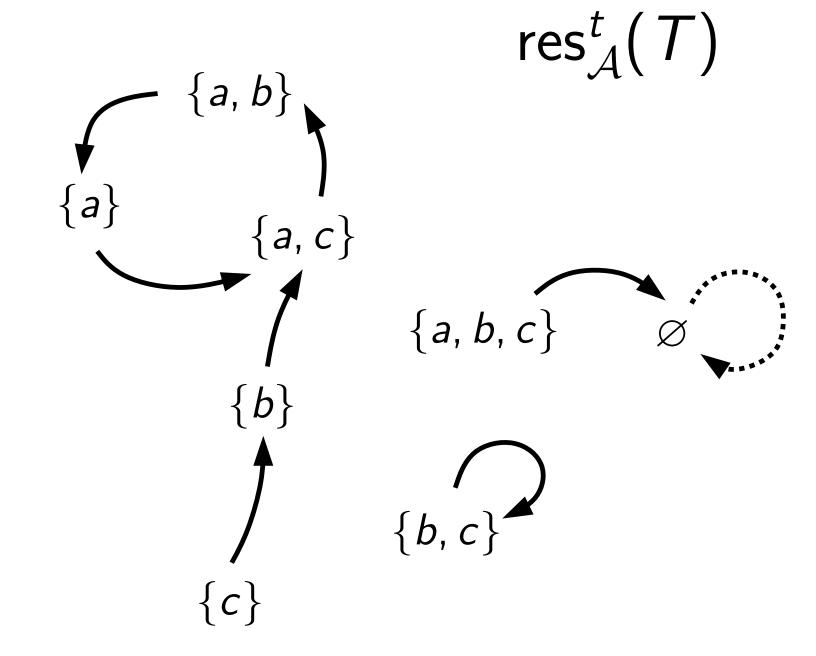
 $f = \operatorname{res}_{\mathcal{A}}$  for some inhibitor-minimal  $\mathcal{A}$ 

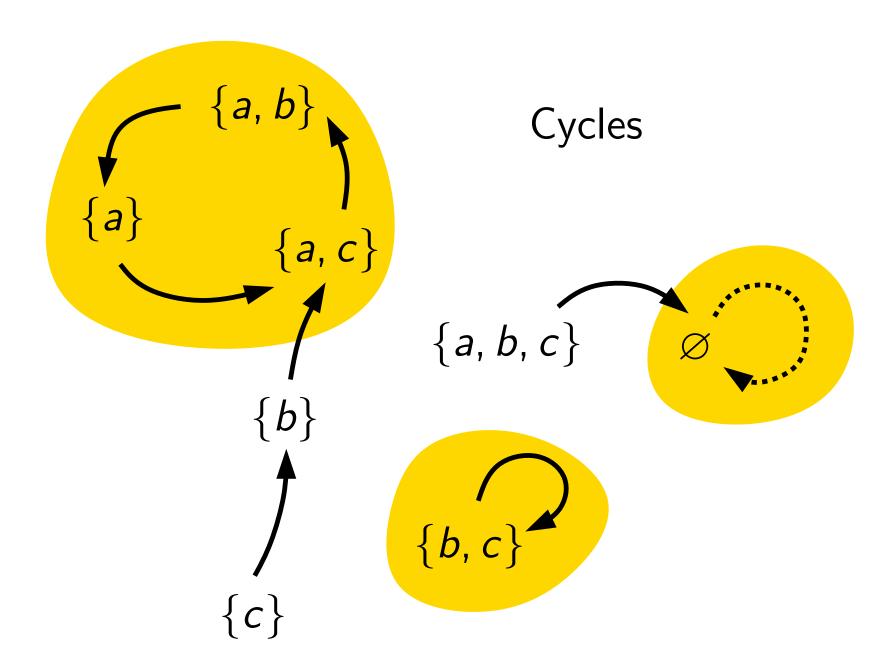
#### Theorem

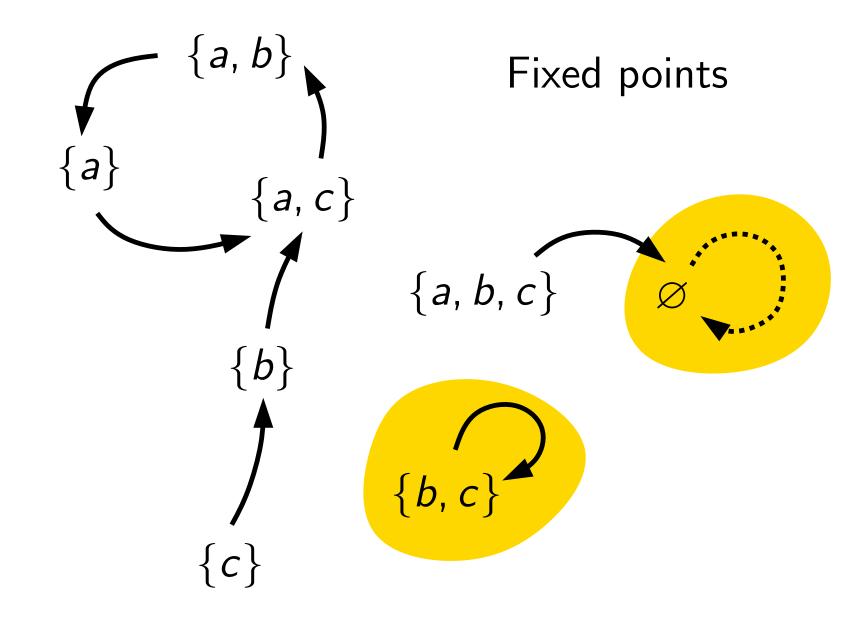
f is union- and intersection-subadditive



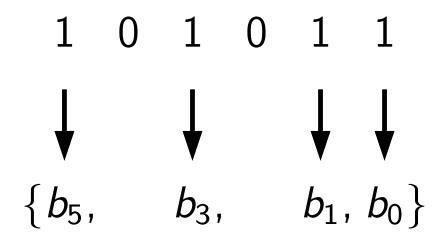
 $f = \operatorname{res}_{\mathcal{A}}$  for some resource-minimal  $\mathcal{A}$ 



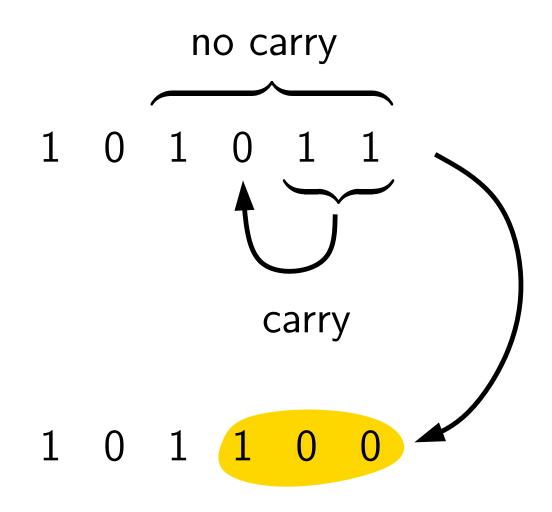




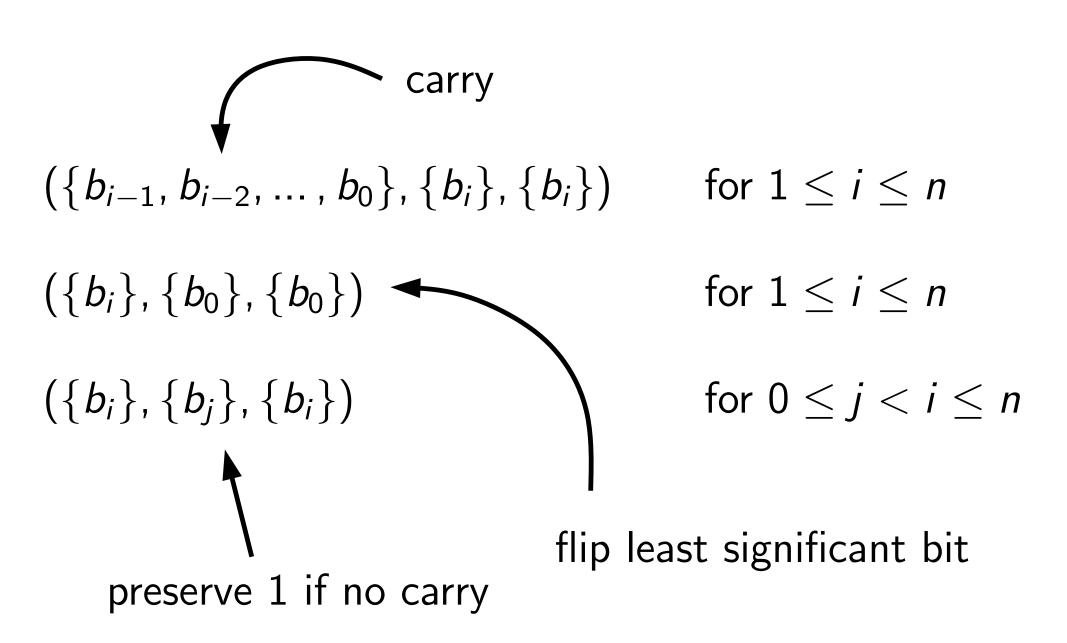
#### Implementing binary counters



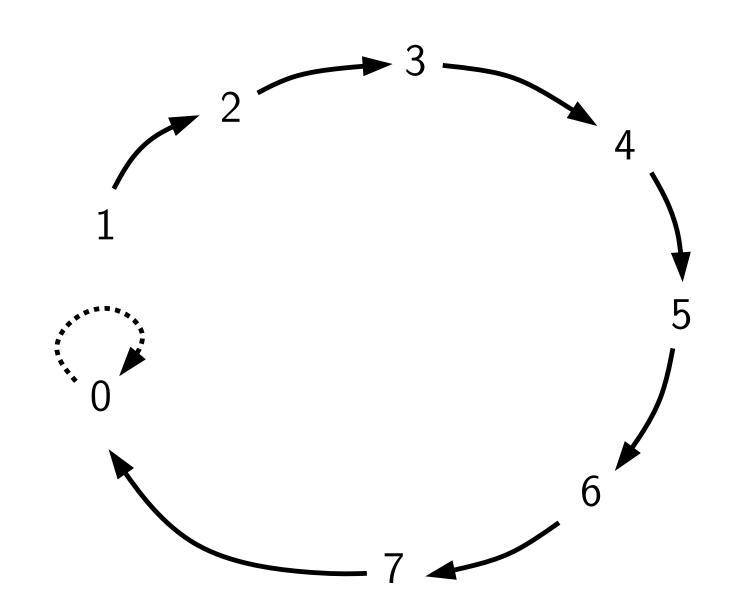
#### Incrementing binary counters



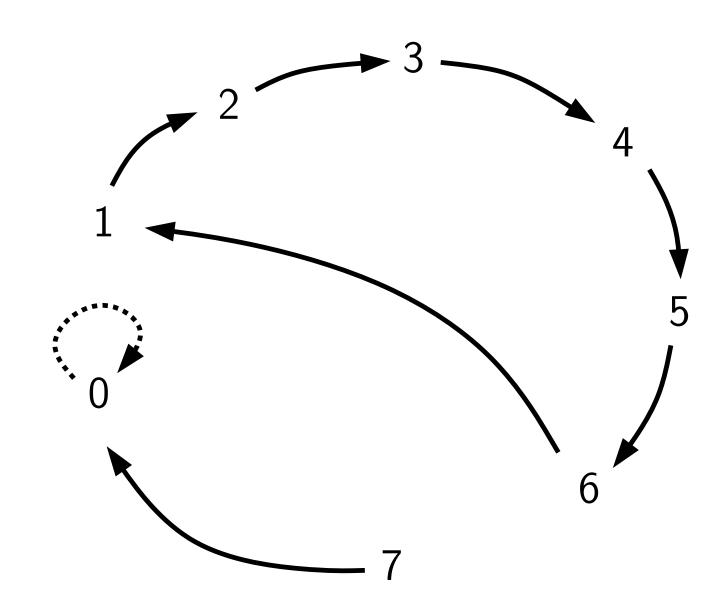
#### Reactions for incrementing binary counters



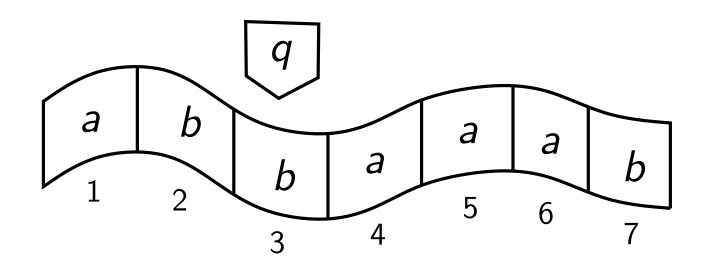
# Long paths $\rightarrow$ binary counters



# Long cycles $\rightarrow$ binary counters

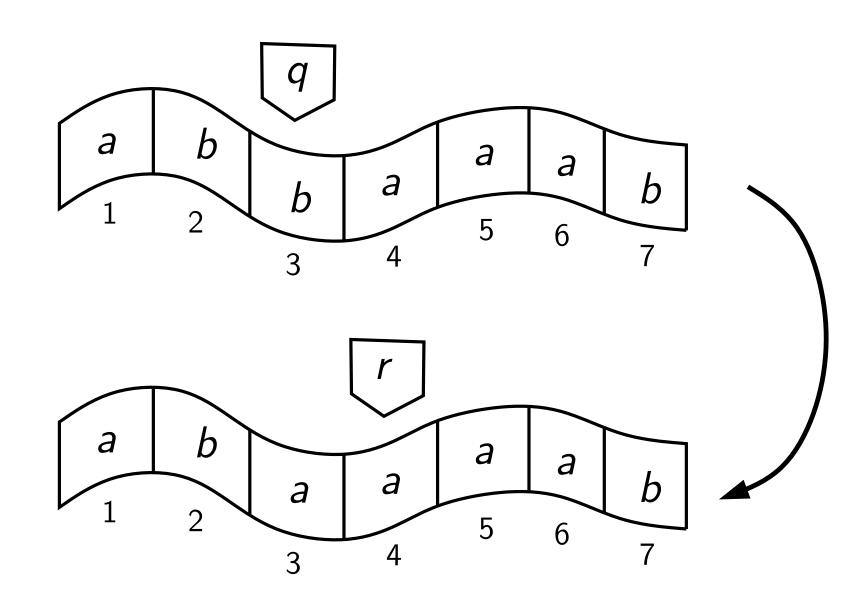


## Turing machines (with bounded tape)

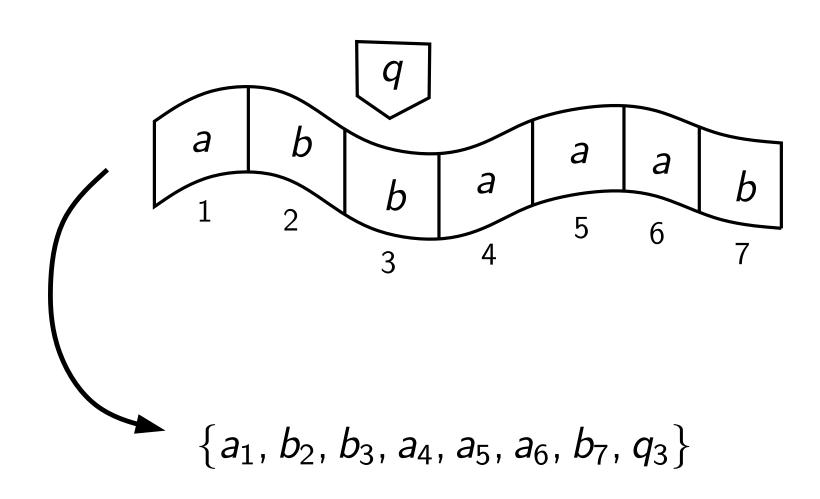


$$egin{array}{llll} q&a&
ightarrow&q&b&
ho\ q&b&
ightarrow&r&a&
ho\ r&b&
ightarrow&r&a&
ho \end{array}$$

# Turing machines (with bounded tape)



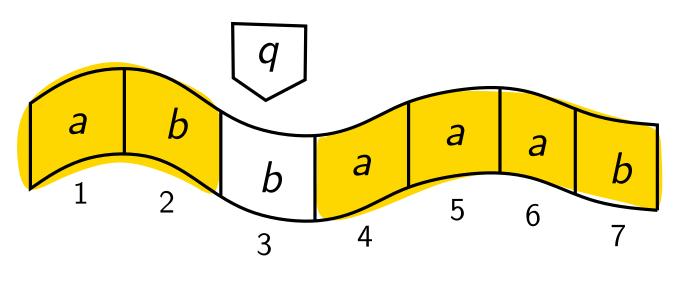
#### Encoding as reaction system



#### Encoding as reaction system

#### Encoding as reaction system

#### Preserving the tape



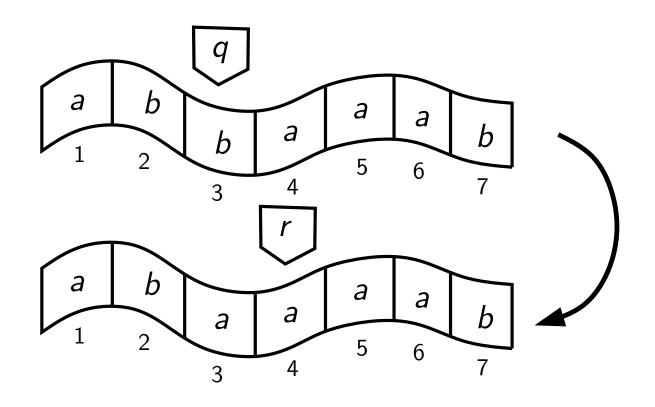
$$(\{a_1\}, \{q_1, r_1\}, \{a_1\}) \qquad (\{b_1\}, \{q_1, r_1\}, \{b_1\})$$

$$(\{a_2\}, \{q_2, r_2\}, \{a_2\}) \qquad (\{b_2\}, \{q_2, r_2\}, \{b_2\})$$

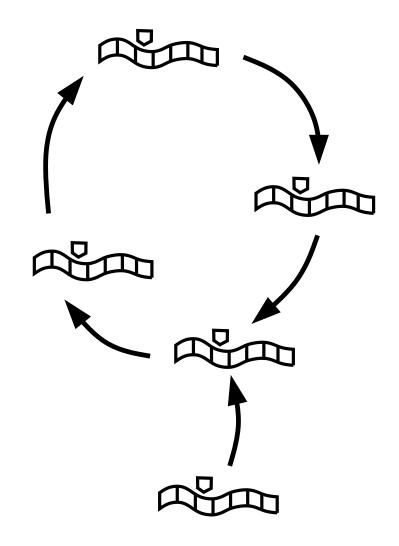
$$\vdots \qquad \vdots \qquad \vdots$$

$$(\{a_7\}, \{q_7, r_7\}, \{a_7\}) \qquad (\{b_7\}, \{q_7, r_7\}, \{b_7\})$$

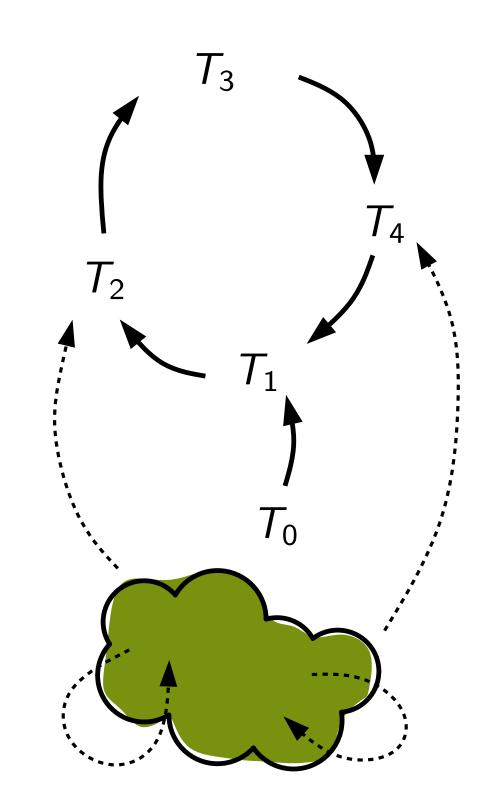
#### Computation step



res<sub>A</sub> 
$$\{a_1, b_2, b_3, a_4, a_5, a_6, b_7, q_3\}$$
  
 $\{a_1, b_2, a_3, a_4, a_5, a_6, b_7, r_4\}$ 



Dynamics of the same complexity



Does minimality make a difference?

f is union- and intersection-subadditive



 $f = \operatorname{res}_{\mathcal{A}}$  for some resource-minimal  $\mathcal{A}$ 

**Theorem** 

For each reaction system  $\mathcal{A}$  there exists a resource-minimal  $\mathcal{B}$  such that

$$\operatorname{res}_{\mathcal{B}}^{\mathbf{2}t}(U) = \operatorname{res}_{\mathcal{A}}^{t}(U)$$

#### Proof idea

$$a = (\{x, y\}, \{z\}, \{w\})$$
  $b = (\{v\}, \{z, w\}, \{z\})$ 

$$\{x,y\} \qquad \{v\} \qquad \{x,z\} \qquad \{x,y,v\}$$

$$\{\bar{b},\heartsuit\} \qquad \{\bar{a},\bar{b},\heartsuit\} \qquad \{\emptyset\}$$

$$\{w\} \qquad \{z\} \qquad \varnothing \qquad \{w,z\}$$

Proof idea: given 
$$a = (R_a, I_a, P_a)$$

Reactant missing?

$$(\{x\}, \{y\}, \{\bar{a}\})$$

for 
$$y \in R_a$$
,  $x \in S - \{y\}$ 

Any inhibitor?

$$(\{x\}, \{\heartsuit\}, \{\bar{a}\})$$
 for  $x \in I_a$ 

for 
$$x \in I_a$$

If not disabled, produce  $P_a$  $(\{\emptyset\}, \{\bar{a}\}, P_a)$ 

Make  $\heartsuit$  every other step

$$(\{x\}, \{\heartsuit\}, \{\heartsuit\})$$
 for  $x \in S$ 

# Proof idea: given $a = (R_a, I_a, P_a)$

Reactant missing?

$$(\lbrace x \rbrace, \lbrace y \rbrace, \lbrace \bar{a} \rbrace)$$

for 
$$y \in R_a$$
,  $x \in S - \{y\}$ 

Any inhibitor?

$$(\{x\}, \{\heartsuit\}, \{\bar{a}\})$$

for 
$$x \in I_a$$

If not disabled, produce  $P_a$ 

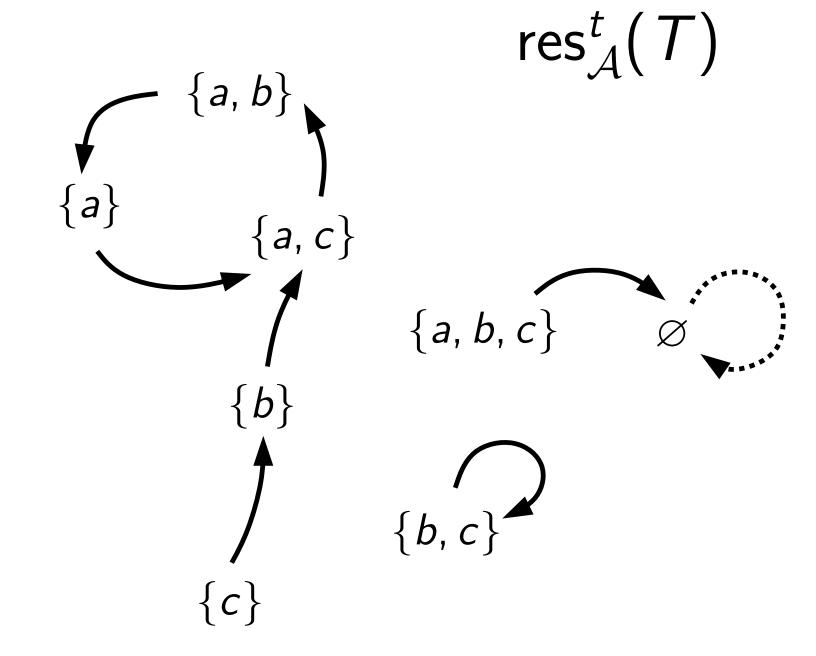
$$(\{\heartsuit\}, \{\bar{a}\}, P_a)$$

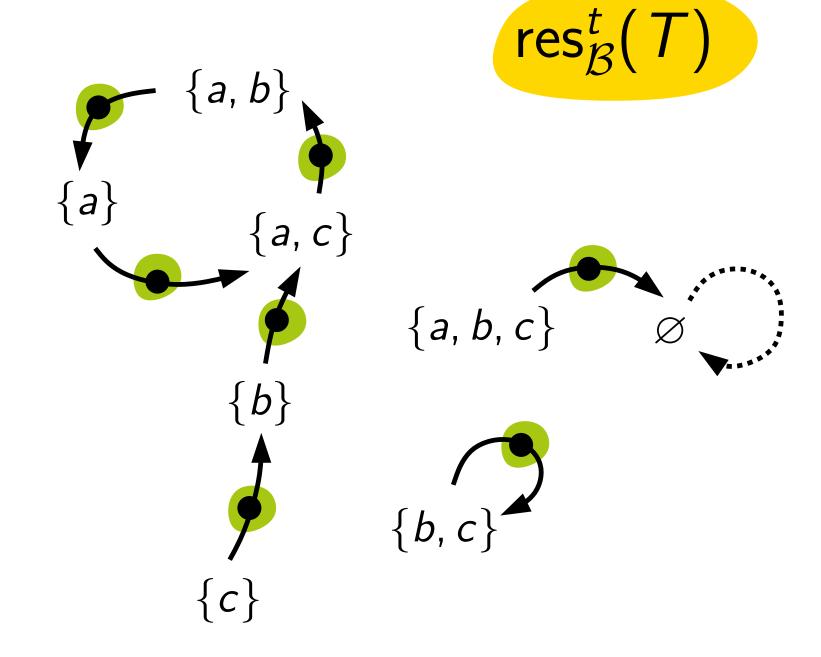


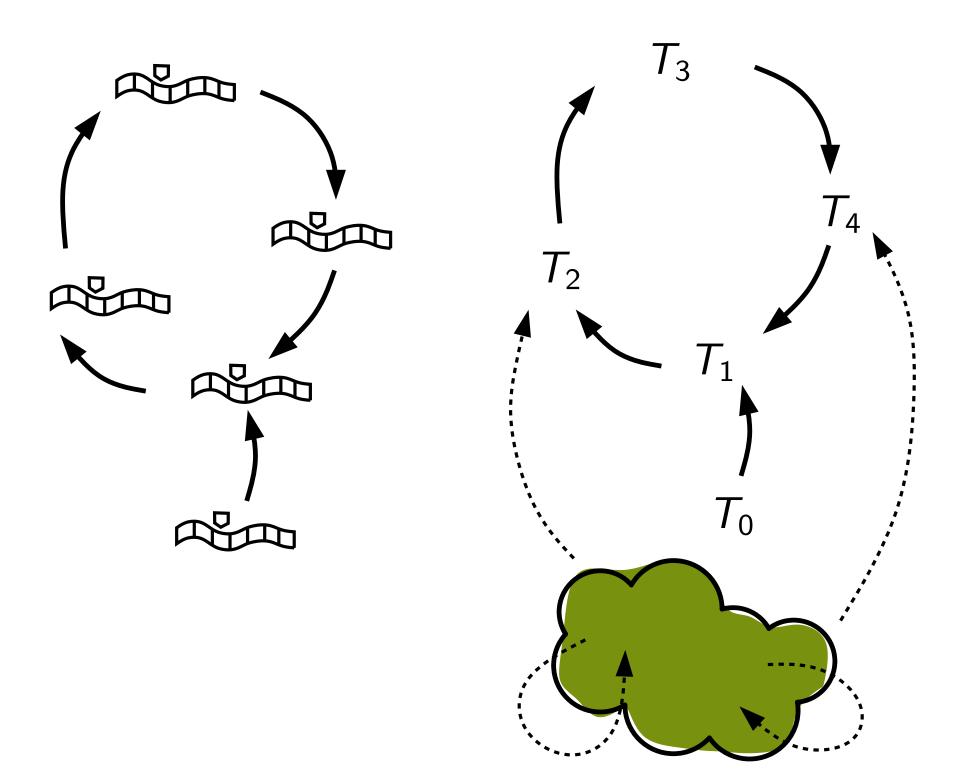
Make  $\heartsuit$  every other step

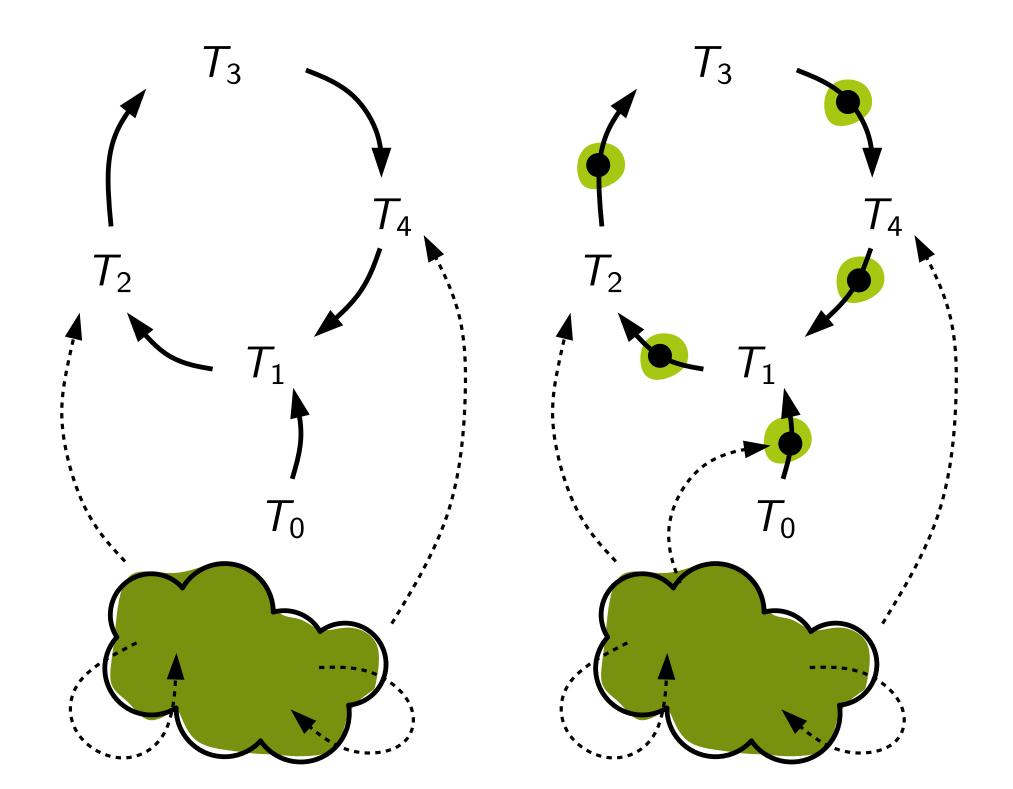
$$(\{x\}, \{\heartsuit\}, \{\heartsuit\})$$
 for  $x \in S$ 

for 
$$x \in S$$



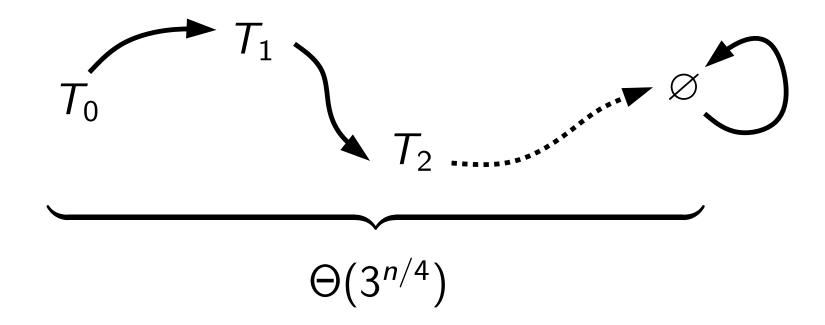






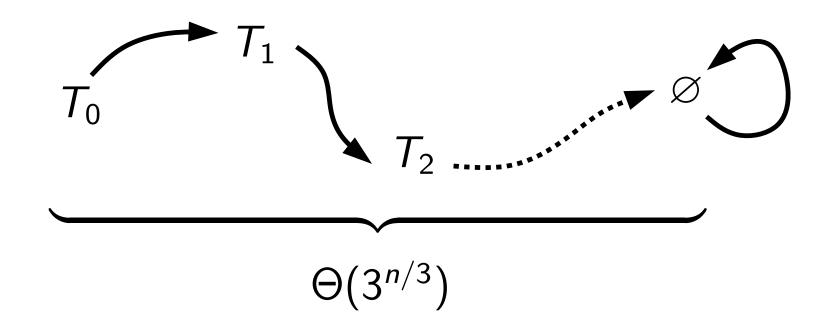
#### Long sequences in resource-minimal reaction systems

There exists a resource-minimal reaction system with |S| = n having a terminating state sequence of length  $\Theta(3^{n/4})$ 



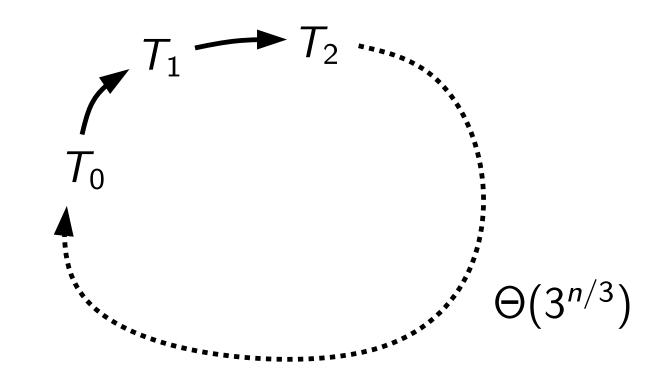
#### Long sequences in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and |S| = n having a terminating state sequence of length  $\Theta(3^{n/3})$ 



#### Long cycles in almost-minimal reaction systems

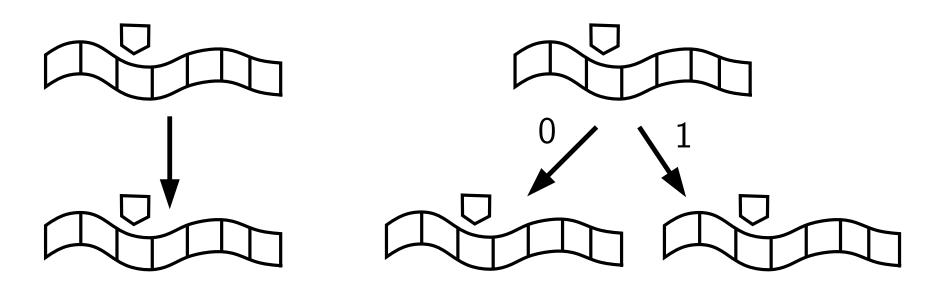
There exists a reaction system with at most 3 resources per reaction and |S| = n having a cycle of length  $\Theta(3^{n/3})$ 



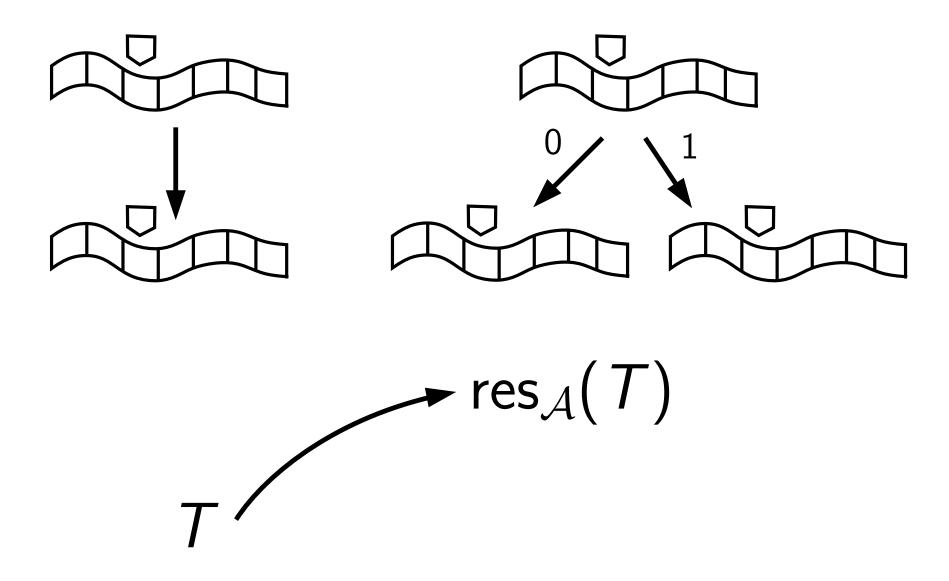
# Does minimality make a difference here?

| Туре             | Longest sequence known                   |
|------------------|------------------------------------------|
| Generic          | $\Theta(2^n) 	o optimal$                 |
| Almost-minimal   | $\Theta(3^{n/3}) \approx \Theta(1.44^n)$ |
| Resource-minimal | $\Theta(3^{n/4}) \approx \Theta(1.32^n)$ |

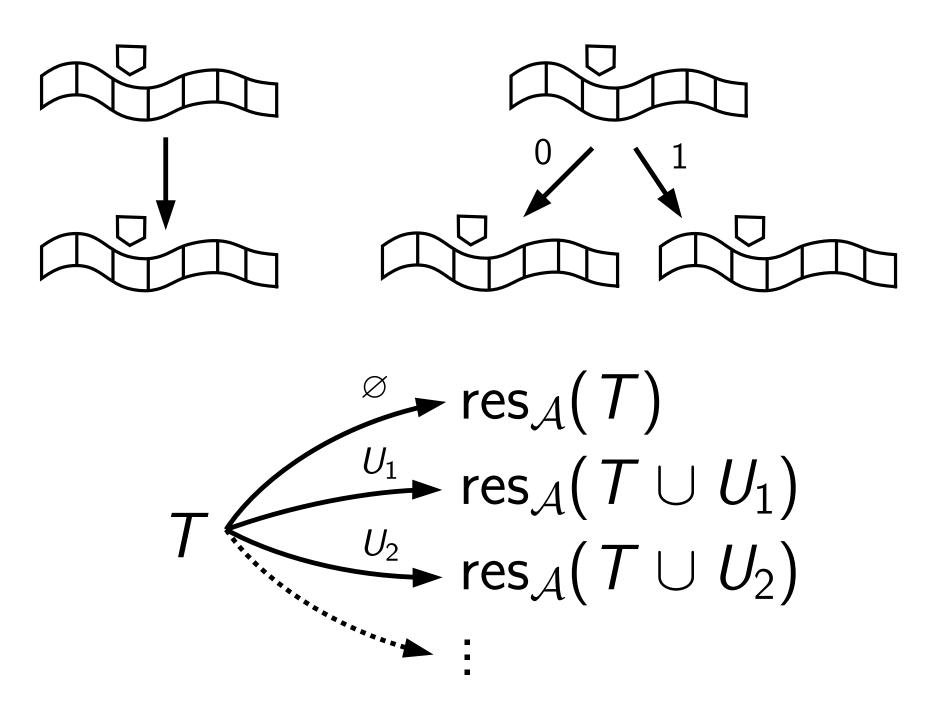
#### Context as nondeterminism



#### Context as nondeterminism



#### Context as nondeterminism



# Thanks for your attention! Grazie per la vostra attenzione!

Any questions?