State sequences of interactive processes of reaction systems

Luca Manzoni, Antonio E. Porreca {luca.manzoni, porreca}@disco.unimib.it

Note: all reaction systems in this talk are without context

$$f: 2^S \rightarrow 2^S$$

power set function

Theorem

 $f = \operatorname{res}_{\mathcal{A}}$ for some \mathcal{A}

f is a boundary power set function

Proof idea

$$f(X) = Y$$

$$\downarrow \downarrow$$

$$(X, S - X, Y)$$

$$(R, \{y\}, P)$$
 inhibitor-minimal (only 1 inhibitor)

$$(\{x\}, \{y\}, P)$$
 resource-minimal (only 1 reactant and 1 inhibitor)

union-subadditive

$$f(X \cup Y) \subseteq f(X) \cup f(Y)$$

$$f(X \cap Y) \subseteq f(X) \cup f(Y)$$

intersection-subadditive

Examples

$$\operatorname{res}_{\mathcal{A}}(\{a\} \cup \{b\}) = \operatorname{res}_{\mathcal{A}}(\{a,b\}) = \{a,b\}$$

$$\uparrow \hookrightarrow \operatorname{res}_{\mathcal{A}}(\{a\}) \cup \operatorname{res}_{\mathcal{A}}(\{b\}) = \emptyset$$

Examples

$$\operatorname{res}_{\mathcal{A}}(\{a, b, c\} \cap \{a, b, d\}) = \operatorname{res}_{\mathcal{A}}(\{a, b\}) = \{a, b\}$$

$$\operatorname{res}_{\mathcal{A}}(\{a, b, c\}) \cup \operatorname{res}_{\mathcal{A}}(\{a, b, d\}) = \emptyset$$

Theorem

f is union-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some reactant-minimal \mathcal{A}

f is intersection-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some inhibitor-minimal \mathcal{A}

Theorem

f is union- and intersection-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some resource-minimal \mathcal{A}

Implementing binary counters

Incrementing binary counters

Reactions for incrementing binary counters

Long paths \rightarrow binary counters

Long cycles \rightarrow binary counters

Turing machines (with bounded tape)

$$egin{array}{llll} q&a&
ightarrow&q&b&
ho\ q&b&
ightarrow&r&a&
ho\ r&b&
ightarrow&r&a&
ho \end{array}$$

Turing machines (with bounded tape)

Encoding as reaction system

Encoding as reaction system

Encoding as reaction system

Preserving the tape

$$(\{a_1\}, \{q_1, r_1\}, \{a_1\}) \qquad (\{b_1\}, \{q_1, r_1\}, \{b_1\})$$

$$(\{a_2\}, \{q_2, r_2\}, \{a_2\}) \qquad (\{b_2\}, \{q_2, r_2\}, \{b_2\})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$(\{a_7\}, \{q_7, r_7\}, \{a_7\}) \qquad (\{b_7\}, \{q_7, r_7\}, \{b_7\})$$

Computation step

res_A
$$\{a_1, b_2, b_3, a_4, a_5, a_6, b_7, q_3\}$$

 $\{a_1, b_2, a_3, a_4, a_5, a_6, b_7, r_4\}$

Dynamics of the same complexity

Does minimality make a difference?

f is union- and intersection-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some resource-minimal \mathcal{A}

Theorem

For each reaction system \mathcal{A} there exists a resource-minimal \mathcal{B} such that

$$\operatorname{res}_{\mathcal{B}}^{\mathbf{2}t}(U) = \operatorname{res}_{\mathcal{A}}^{t}(U)$$

Proof idea

$$a = (\{x, y\}, \{z\}, \{w\})$$
 $b = (\{v\}, \{z, w\}, \{z\})$

$$\{x,y\} \qquad \{v\} \qquad \{x,z\} \qquad \{x,y,v\}$$

$$\{\bar{b},\heartsuit\} \qquad \{\bar{a},\bar{b},\heartsuit\} \qquad \{\emptyset\}$$

$$\{w\} \qquad \{z\} \qquad \varnothing \qquad \{w,z\}$$

Proof idea: given
$$a = (R_a, I_a, P_a)$$

Reactant missing?

$$(\{x\}, \{y\}, \{\bar{a}\})$$

for
$$y \in R_a$$
, $x \in S - \{y\}$

Any inhibitor?

$$(\{x\}, \{\heartsuit\}, \{\bar{a}\})$$
 for $x \in I_a$

for
$$x \in I_a$$

If not disabled, produce P_a $(\{\emptyset\}, \{\bar{a}\}, P_a)$

Make \heartsuit every other step

$$(\{x\}, \{\heartsuit\}, \{\heartsuit\})$$
 for $x \in S$

Proof idea: given $a = (R_a, I_a, P_a)$

Reactant missing?

$$(\lbrace x \rbrace, \lbrace y \rbrace, \lbrace \bar{a} \rbrace)$$

for
$$y \in R_a$$
, $x \in S - \{y\}$

Any inhibitor?

$$(\{x\}, \{\heartsuit\}, \{\bar{a}\})$$

for
$$x \in I_a$$

If not disabled, produce P_a

$$(\{\heartsuit\}, \{\bar{a}\}, P_a)$$

Make \heartsuit every other step

$$(\{x\}, \{\heartsuit\}, \{\heartsuit\})$$
 for $x \in S$

for
$$x \in S$$

Long sequences in resource-minimal reaction systems

There exists a resource-minimal reaction system with |S| = n having a terminating state sequence of length $\Theta(3^{n/4})$

Long sequences in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and |S| = n having a terminating state sequence of length $\Theta(3^{n/3})$

Long cycles in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and |S| = n having a cycle of length $\Theta(3^{n/3})$

Does minimality make a difference here?

Туре	Longest sequence known
Generic	$\Theta(2^n) o optimal$
Almost-minimal	$\Theta(3^{n/3}) \approx \Theta(1.44^n)$
Resource-minimal	$\Theta(3^{n/4}) \approx \Theta(1.32^n)$

Context as nondeterminism

Context as nondeterminism

Context as nondeterminism

Thanks for your attention! Grazie per la vostra attenzione!

Any questions?