State sequences of reaction systems

Antonio E. Porreca
Aix-Marseille Université \&
Laboratoire d'Informatique et Systèmes ■ ■ https://aeporreca.org

Note: in this lecture we discuss the context-independent behaviour of RS unless otherwise specified

Power set functions

$f: 2^{S} \rightarrow 2^{S}$ $\underbrace{\text { power set }} \begin{aligned} & \text { function }\end{aligned}$

$f(\varnothing)=f(S)=\varnothing \quad \begin{array}{r}\text { boundary } \\ \text { condition }\end{array}$

Computing (or implementing) power set functions by RS

$$
f=\operatorname{res}_{\mathcal{A}} \text { for some } \mathcal{A}
$$

f is a boundary power set function

$$
f(X)=Y
$$

$$
\Downarrow
$$

$$
(X, S-X, Y)
$$

complement reaction

Computing power set functions by RS with restricted resources

Minimal RS

How does minimality restrict the class of functions computed (or implemented) by RS?

Subadditive functions

Examples

$$
(\{a, b\},\{c, d\},\{a, b\})
$$

Not union-subadditive

$$
\begin{gathered}
\operatorname{res}_{\mathcal{A}}(\{a\} \cup\{b\})=\operatorname{res}_{\mathcal{A}}(\{a, b\})=\{a, b\} \\
\operatorname{res}_{\mathcal{A}}(\{a\}) \cup \operatorname{res}_{\mathcal{A}}(\{b\})=\varnothing
\end{gathered}
$$

Examples

$$
(\{a, b\},\{c, d\},\{a, b\})
$$

Not intersection-subadditive
$\operatorname{res}_{\mathcal{A}}(\{a, b, c\} \cap\{a, b, d\})=\operatorname{res}_{\mathcal{A}}(\{a, b\})=\{a, b\}$ N
$\operatorname{res}_{\mathcal{A}}(\{a, b, c\}) \cup \operatorname{res}_{\mathcal{A}}(\{a, b, d\})=\varnothing$

Theorem

f is union-subadditive

$f=\operatorname{res}_{\mathcal{A}}$ for some reactant-minimal \mathcal{A}
f is intersection-subadditive

$f=\operatorname{res}_{\mathcal{A}}$ for some inhibitor-minimal \mathcal{A}
f is union- and intersection-subadditive

$f=\operatorname{res}_{\mathcal{A}}$ for some resource-minimal \mathcal{A}

Dynamics of RS: state sequences

Dynamics

$\operatorname{res}_{\mathcal{A}}^{n}(T)$

$$
\{c\}
$$

Dynamics

Dynamics

Fixed points

$$
\{a, b, c\}
$$

$\{b\}$)
\{c\}

An example of interesting dynamics: implementing binary counters

Implementing binary counters

$$
\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 1 \\
\downarrow & & \downarrow & & \downarrow & \downarrow \\
\left\{b_{5},\right. & & b_{3}, & & \left.b_{1}, b_{0}\right\}
\end{array}
$$

Incrementing binary counters

Reactions for incrementing binary counters

$$
\begin{array}{ll}
\left(\left\{b_{i-1}, b_{i-2}, \ldots, b_{0}\right\},\left\{b_{i}\right\},\left\{b_{i}\right\}\right) & \text { for } 1 \leq i \leq n \\
\left(\left\{b_{i}\right\},\left\{b_{0}\right\},\left\{b_{0}\right\}\right) & \text { for } 1 \leq i \leq n \\
\left(\left\{b_{i}\right\},\left\{b_{j}\right\},\left\{b_{i}\right\}\right) & \text { for } 0 \leq j<i
\end{array}
$$

Binary counters \rightarrow long paths

Binary counters \rightarrow long cycles

General computable dynamics: simulating Turing machines

Turing machines (with bounded tape)

$q a \rightarrow q b \triangleright$
$q b \rightarrow r a \triangleright$
$r a \rightarrow q \quad a \quad$
$r b \rightarrow r a \quad \triangleright$

Turing machines (with bounded tape)

Encoding as reaction system

Encoding as reaction system

$$
\left.\begin{array}{cccccc}
q & a & \rightarrow & q & b & \triangleright \\
q & b & \rightarrow & r & a & \triangleright \\
r & a & \rightarrow & q & a & \triangleleft \\
r & b & \rightarrow & r & a & \triangleright
\end{array}\right\} \begin{array}{cll}
\left(\left\{q_{1}, a_{1}\right\},\right. & \left.\{\boldsymbol{\phi}\},\left\{q_{2}, b_{1}\right\}\right) \\
\left(\left\{q_{2}, a_{2}\right\},\right. & \left.\{\boldsymbol{\oplus}\},\left\{q_{3}, b_{2}\right\}\right) \\
\vdots \\
\left(\left\{q_{6}, a_{6}\right\},\right. & \left.\{\boldsymbol{\phi}\},\left\{q_{7}, b_{6}\right\}\right)
\end{array}
$$

Encoding as reaction system

$$
\left.\begin{array}{cccccc}
q & a & \rightarrow & q & b & \triangleright \\
q & b & \rightarrow & r & a & \triangleright
\end{array}\right)
$$

Preserving the tape

$\begin{array}{ll}\left(\left\{a_{1}\right\},\left\{q_{1}, r_{1}\right\},\left\{a_{1}\right\}\right) & \left(\left\{b_{1}\right\},\left\{q_{1}, r_{1}\right\},\left\{b_{1}\right\}\right) \\ \left(\left\{a_{2}\right\},\left\{q_{2}, r_{2}\right\},\left\{a_{2}\right\}\right) & \left(\left\{b_{2}\right\},\left\{q_{2}, r_{2}\right\},\left\{b_{2}\right\}\right)\end{array}$
$\left(\left\{a_{7}\right\},\left\{q_{7}, r_{7}\right\},\left\{a_{7}\right\}\right)$
$\left(\left\{b_{7}\right\},\left\{q_{7}, r_{7}\right\},\left\{b_{7}\right\}\right)$

Computation step

$\operatorname{res}_{\mathcal{A}} \longrightarrow \begin{aligned} & \left\{a_{1}, b_{2}, b_{3}, a_{4}, a_{5}, a_{6}, b_{7}, q_{3}\right\} \\ & \left\{a_{1}, b_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{7}, r_{4}\right\}\end{aligned}$

High-level dynamics of resource-minimal RS

Simulating power of minimal RS

It turns out that resource-minimal RS are powerful enough to simulate arbitrary RS, if we allow a less strict notion of simulation

For each reaction system \mathcal{A} there exists
a resource-minimal \mathcal{B} such that, for each state T and time n,

$$
\operatorname{res}_{\mathcal{B}}^{2 n}(T)=\operatorname{res}_{\mathcal{A}}^{n}(T)
$$

For each reaction system \mathcal{A} there exists
a resource-minimal \mathcal{B} such that, for each state T and time n,

$$
\operatorname{res}_{\mathcal{B}}^{2 n}(T)=\operatorname{res}_{\mathcal{A}}^{n}(T)
$$

For each reaction system \mathcal{A} there exists
a resource-minimal \mathcal{B} such that, for each state T and time n,

$$
\operatorname{res}_{\mathcal{B}}^{2 n}(T)=\operatorname{res}_{\mathcal{A}}^{n}(T) \underbrace{\operatorname{lm} / m_{L / \partial} x_{i}}
$$

\mathcal{A}

$$
T_{1} \longrightarrow T_{2} \longrightarrow T_{3} \longrightarrow T_{4} \rightarrow
$$

\mathcal{B}

Proof idea

$$
a=(\{x, y\},\{z\},\{w\}) \quad b=(\{v\},\{z, w\},\{z\})
$$

Proof idea: given $a=\left(R_{a}, l_{a}, P_{a}\right)$

Reactant missing?

$$
(\{x\},\{y\},\{\bar{a}\}) \quad \text { for } y \in R_{a}, x \in S-\{y\}
$$

Any inhibitor?

$$
(\{x\},\{\oslash\},\{\bar{a}\}) \quad \text { for } x \in I_{a}
$$

If not disabled, produce P_{a}
$\left(\{D\},\{\bar{a}\}, P_{a}\right)$
Make \triangle every other step

$$
(\{x\},\{\Omega\},\{\Omega\}) \quad \text { for } x \in S
$$

Proof idea: given $a=\left(R_{a}, l_{a}, P_{a}\right)$

Reactant missing?

$$
(\{x\},\{y\},\{\bar{a}\}) \quad \text { for } y \in R_{a}, x \in S-\{y\}
$$

Any inhibitor?

$$
(\{x\},\{\Omega\},\{\bar{a}\}) \quad \text { for } x \in I_{a}
$$

If not disabled, produce P_{a}

$$
\left(\{\Omega\},\{\bar{a}\}, P_{a}\right)
$$

Minimal!
Make \triangle every other step

$$
(\{x\},\{\Omega\},\{\Omega\}) \quad \text { for } x \in S
$$

Dynamics

$\operatorname{res}_{\mathcal{A}}^{n}(T)$

$$
\{c\}
$$

Dynamics

$\operatorname{res}_{\mathcal{B}}^{n}(T)$

Low-level (detailed) dynamics of resource-minimal RS

Long sequences in resource-minimal reaction systems

There exists a resource-minimal reaction system with $|S|=n$ having a terminating state sequence of length $\Theta\left(3^{n / 4}\right)$

Almost-minimal RS

$$
(R, I, P)
$$

at most 2 resources
$|R|+|I| \leq 2$

Long sequences in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and $|S|=n$ having a terminating state sequence of length $\Theta\left(3^{n / 3}\right)$

$\Theta\left(3^{n / 3}\right)$

Long cycles in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and $|S|=n$ having a cycle of length $\Theta\left(3^{n / 3}\right)$

Long sequences generated by RS: known results

Type
Longest sequence known

Generic

Almost-minimal

Resource-minimal
$\Theta\left(3^{n / 3}\right) \approx \Theta\left(1.44^{n}\right)$
$\Theta\left(3^{n / 4}\right) \approx \Theta\left(1.32^{n}\right)$

Context dependence

Context as nondeterminism

Context as nondeterminism

Context as nondeterminism

$$
\begin{aligned}
& \xrightarrow{\stackrel{U_{1}}{\longrightarrow}} \operatorname{res}_{\mathcal{A}}(T) \\
& \xrightarrow[\ddots]{U_{2}} \operatorname{res}_{\mathcal{A}}\left(T \cup U_{2}\right)
\end{aligned}
$$

Thanks for your attention! Dziękuję za uwagę!

Any questions?

