State sequences of reaction systems

Antonio E. Porreca Aix-Marseille Université & Laboratoire d'Informatique et Systèmes https://aeporreca.org Note: in this lecture we discuss the context-independent behaviour of RS unless otherwise specified

Power set functions

Computing (or implementing) power set functions by RS

f is a boundary power set function

Computing power set functions by RS with restricted resources

How does minimality restrict the class of functions computed (or implemented) by RS?

Subadditive functions

$$\operatorname{res}_{\mathcal{A}}(\{a\} \cup \{b\}) = \operatorname{res}_{\mathcal{A}}(\{a, b\}) = \{a, b\}$$
$$\stackrel{\text{ifs}}{\longrightarrow}$$
$$\operatorname{res}_{\mathcal{A}}(\{a\}) \cup \operatorname{res}_{\mathcal{A}}(\{b\}) = \varnothing$$

$$\operatorname{res}_{\mathcal{A}}(\{a, b, c\} \cap \{a, b, d\}) = \operatorname{res}_{\mathcal{A}}(\{a, b\}) = \{a, b\}$$
$$\stackrel{\text{tres}}{\longrightarrow}$$
$$\operatorname{res}_{\mathcal{A}}(\{a, b, c\}) \cup \operatorname{res}_{\mathcal{A}}(\{a, b, d\}) = \varnothing$$

f is union-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some reactant-minimal \mathcal{A}

f is intersection-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some inhibitor-minimal \mathcal{A}

f is union- and intersection-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some resource-minimal \mathcal{A}

Dynamics of RS: state sequences

An example of interesting dynamics: implementing binary counters

Implementing binary counters

Incrementing binary counters

Reactions for incrementing binary counters

carry $(\{b_{i-1}, b_{i-2}, \dots, b_0\}, \{b_i\}, \{b_i\})$ for $1 \le i \le n$ $(\{b_i\}, \{b_0\}, \{b_0\})$ for 1 < i < nfor $0 \le j < i \le n$ $(\{b_i\}, \{b_i\}, \{b_i\})$ flip least significant bit preserve 1 if no carry

Binary counters \rightarrow long paths

Binary counters \rightarrow long cycles

General computable dynamics: simulating Turing machines

Turing machines (with bounded tape)

Turing machines (with bounded tape)

Encoding as reaction system

Encoding as reaction system

Encoding as reaction system

$$(\{r_2, a_2\}, \{\clubsuit\}, \{q_1, a_2\})$$
$$(\{r_3, a_3\}, \{\clubsuit\}, \{q_2, a_3\})$$
$$\vdots$$
$$(\{r_7, a_7\}, \{\clubsuit\}, \{q_6, a_7\})$$

Preserving the tape

 $(\{a_1\}, \{q_1, r_1\}, \{a_1\}) \\ (\{a_2\}, \{q_2, r_2\}, \{a_2\})$

 $(\{b_1\}, \{q_1, r_1\}, \{b_1\})$ $(\{b_2\}, \{q_2, r_2\}, \{b_2\})$

 $(\{a_7\}, \{q_7, r_7\}, \{a_7\})$ $(\{b_7\}, \{q_7, r_7\}, \{b_7\})$

Computation step

$$\operatorname{res}_{\mathcal{A}} \left\{ a_{1}, b_{2}, b_{3}, a_{4}, a_{5}, a_{6}, b_{7}, q_{3} \right\} \\ \left\{ a_{1}, b_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{7}, r_{4} \right\}$$

Dynamics of the same complexity

High-level dynamics of resource-minimal RS

It turns out that resource-minimal RS are powerful enough to simulate arbitrary RS, if we allow a less strict notion of simulation

For each reaction system \mathcal{A} there exists a resource-minimal \mathcal{B} such that, for each state T and time n,

$$\operatorname{res}_{\mathcal{B}}^{2n}(T) = \operatorname{res}_{\mathcal{A}}^{n}(T)$$

For each reaction system \mathcal{A} there exists a resource-minimal \mathcal{B} such that, for each state T and time n,

simulation $\operatorname{res}_{\mathcal{B}}^{2n}(T) = \operatorname{res}_{\mathcal{A}}^{n}(T)$

For each reaction system \mathcal{A} there exists a resource-minimal \mathcal{B} such that, for each state T and time n,

$$\operatorname{res}_{\mathcal{B}}^{2n}(T) = \operatorname{res}_{\mathcal{A}}^{n}(T)$$

 $a = (\{x, y\}, \{z\}, \{w\})$ $b = (\{v\}, \{z, w\}, \{z\})$

Proof idea: given $a = (R_a, I_a, P_a)$

Reactant missing? $(\{x\}, \{y\}, \{\bar{a}\})$ for $y \in R_a$, $x \in S - \{y\}$ Any inhibitor? $(\{x\}, \{\heartsuit\}, \{\bar{a}\})$ for $x \in I_a$ If not disabled, produce P_a $(\{\heartsuit\}, \{\bar{a}\}, P_a)$ Make \heartsuit every other step $(\{x\},\{\heartsuit\},\{\heartsuit\})$ for $x \in S$

Proof idea: given $a = (R_a, I_a, P_a)$

Low-level (detailed) dynamics of resource-minimal RS

Long sequences in resource-minimal reaction systems

There exists a resource-minimal reaction system with |S| = n having a terminating state sequence of length $\Theta(3^{n/4})$

Long sequences in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and |S| = nhaving a terminating state sequence of length $\Theta(3^{n/3})$

Long cycles in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and |S| = n having a cycle of length $\Theta(3^{n/3})$

Long sequences generated by RS: known results

Туре	Longest sequence known
Generic	$\Theta(2^n) ightarrow optimal$
Almost-minimal	$\Theta(3^{n/3}) pprox \Theta(1.44^n)$
Resource-minimal	$\Theta(3^{n/4}) pprox \Theta(1.32^n)$

Context dependence

Context as nondeterminism

Context as nondeterminism

Context as nondeterminism

Thanks for your attention! Dziękuję za uwagę!

