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Note: in this lecture we discuss
the ‘context-independent behaviour of RS
unless otherwise specified



Power set functions
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Computing (or implementing)

power set functions by RS



Theorem

f = res 4 for some A

0

f is a boundary power set function



Proof idea

F(X)=Y

|

(X,S—X,Y)

\com plement

reaction



Computing power set functions
by RS with restricted resources



Minimal RS

/_\ S
({X}, /, P) reactant-minimal

(only 1 reactant)

(R, {y}, P) inhibitor-minimal

(only 1 inhibitor)

({X}, {y}, P) resource-minimal

(only 1 reactant
k_/ and 1 inhibitor)



How does minimality ‘restrict

the class of functions computed

(or implemented) by RS?



Subadditive functions

r\ union-subadditive

FIXUY)CA(X)UF(Y)

F(XNY)CFX)UF(Y)

k/ intersection-subadditive



Examples

({a, by, {c. d}, {a, b}) ‘\

Not union-subadditive

resa({a} U {b}) = resa({a b}) = {a, b}

™
resa({a}) Uresa({b}) = @



Examples

({a, by, {c. d}, {a, b}) ‘\

Not intersection-subadditive

resa({a, b,c} N{a, b,d}) =ress({a, b}) = {a, b}
T~
resa({a, b,c})Uresys({a, b, d}) =9



Theorem

f is union-subadditive

0

f = res, for some reactant-minimal A



Theorem

f 1Is intersection-subadditive

0

f = res 4 for some inhibitor-minimal A



Theorem

f 1s union- and intersection-subadditive

f = res4 for some resource-minimal A



Dynamics of RS:
state sequences



Dynamics

a res"y(T)
r {a, b}
{a} ‘5
\ {a, c}
/ {a, b, c}/NQ



Dynamics

13}

r 19, b}w



Dynamics

r 1a, b}w Fixed points

13}

, {a, c} e
/ {a, b, c} %) ‘
{b}
I

1€}



An example of interesting dynamics:
implementing ‘binary counters



Implementing binary counters

1 01 0 11

SR

{bs, b3, b1, bo}



Incrementing binary counters

no carry



Reactions for incrementing binary counters

r\ carry

({b,'_l, b,'_2, ceey bo}, {b,‘}, {b,}) for 1 S I S n

({b;},{bo}, {bo}) for 1 <i<n
({bi}. {bi}. {b:}) for 0 < j <7 <n
\ flip least significant bit

preserve 1 if no carry



Binary counters — long paths
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Binary counters — long cycles



General computable dynamics:
simulating Turing machines



Turing machines (with bounded tape)

g a — g b >
qg b — r a b
r a — g a <
r b — r a b



Turing machines (with bounded tape)

2 5
3 4 {
a b 3
ﬁ a | 4 ?l\\b
1 2 5 6




Encoding as reaction system

{31, b, b3, as, as, as, by, CI3}



Encoding as reaction system

g a — g b >
q b — r a »
r a — g a <
r b — r a b

(191, a1}, {#}, {2, b1 })
({1q2, 221, {&}, {3, b2 })

(196. a6}, {#}. 197, bs})



Encoding as reaction system
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(1r2, a2}, {#},{q1, a2})
(1r3: a3}, {#} {q2, a3})

(\rr, a7}, {#} {36 ar})



Preserving the tape

a b
g p|a )’ ?l\\b
1 2 5 6

3 4 {

({ai}t {qu. nt {ay)  ({bif. g it b))
(132}, 192, nt. {a2)) ({62} {92, 2}, 162})

(1ar}. 1g7, r7}. 1ar}) (167} g7 e} 1b7})



Computation step

{31, by, b3, as, as, ae, by, Q3}
res 4 Q

{31, b, a3, aa, as, as, by, l’4}



Dynamics of the
same complexity
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High-level dynam
of resource-minima

ICS

RS



Simulating power of minimal RS

It turns out that resource-minimal RS are
powerful enough to simulate arbitrary RS,
if we allow a less strict notion of simulation



Theorem

For each reaction system A there exists
a resource-minimal B such that,
for each state T and time n,

res%” (T)=res"y(T)



Theorem

For each reaction system A there exists
a resource-minimal B such that,

for each state T and time n, . 2y
On

resy’( T) = res”)( TU



Theorem

For each reaction system A there exists
a resource-minimal B such that,
for each state T and time n, . 2y
Uy,
©n

resy’( T) = res”)( TU

A [{—» T, —» [; —» [,

B T1—>0—>T2—>0—>T3—>0—>T4—>



Proof idea

a=(x.yhzpiwy) b= Qv 1z, wy {2})

{x,y} {v} {x,z} (x.y.v}

} ) (

{b, 0} (01 {3560} {0}
c 0 )
%)

Wj {z} {w, z}



Proof idea: given a = (R,, I,, P5)

Reactant missing?

({xt {rt.{a})  foryeR,xeS—{y}
Any inhibitor?

({x},{O}, {3a}) for x € 1,
If not disabled, produce P,

(19} 135, Pa)

Make © every other step
(X3 V1Y) forxeS



Proof idea: given a = (R,, I,, P5)

Reactant missing?
({x} Ay} {a})  foryeR,xeS—{y}
Any inhibitor?

({x},{O}, {3a}) for x € 1,

If not disabled, produce P, ‘\

) (i@i 13}, Pa)h 4_\ Minimal
ake \/ every other step
({x},{O} {O}) forx e S /



Dynamics

a resy(T)
r {a, b}
{a} ‘5
\ {a, c}
/ {a, b, c}/NQ



Dynamics

f/ 19, b};

13}



Low-level (detailed) dynamics
of resource-minimal RS



Long sequences in resource-minimal reaction systems

There exists a resource-minimal reaction
system with |S| = n having a terminating
state sequence of length ©(37/4)




Almost-minimal RS

A N

at most 2 resources
(R'/"D) |R\+|l\§2



Long sequences in almost-minimal reaction systems

There exists a reaction system with at
most 3 resources per reaction and |S| = n
having a terminating state sequence of

length ©(3"/3)

Yt
To \ e 9 3

Tr ...

©(3"3)



Long cycles in almost-minimal reaction systems

There exists a reaction system with at
most 3 resources per reaction and |S| = n
having a cycle of length ©(3"/3)

Tl /> T2 ‘-......

/'

To
4

5 @(3n/3)



Long sequences generated by RS: known results

Type Longest sequence known
Generic ©(2") — optimal
Almost-minimal O(3"3) ~ ©(1.44")
Resource-minimal O(3"*) ~ ©(1.32")



Context dependence



Context as nondeterminism
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Context as nondeterminism
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Context as nondeterminism
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Thanks for your attentionl

Dziekuje za uwage!

Any questions?



