What do we know (and what we don't) about the computational complexity of Reaction Systems

> Luca Manzoni 📶 Antonio E. Porreca 📶

Oulline

Dynamical behaviours
Detection of behaviours
Using RS for computing

Dynamical Dehaviours

Behaviours

Dynamical Behaviours

64-6 Fixed point altractor

Behaviours

Behaviours

Garden of Eden

Path from T to U

Delection of behaviours

Fill the blanks

Does [Reaction System] given [additional parameters] exhibit [dynamical behaviour] ?

Does A=(S,A)given a fixed point T exhibit a state $U\neq T$ such that $res_A(U) = T$?

Equality of RS

Does A=(S,A) B=(S,B) given [nothing more] exhibit the same result function ?

Reachabilily

Does A=(S,A) given T, U subsets of S exhibit a path from T to U ?

Reduction from SAT in CNF

 $f = (x \vee y) \notin (x \vee -z)$ C1 C2

NP-complete

 $f = (x \vee y) \notin (x \vee -z)$

 $S = \{x, y, z, C_1, C_2\}$

 $(\{C_1, C_2\}, \{x, y, z\}, \{C_1, C_2\})$ $(\{x\}, \{C_1, C_2\}, \{C_1, C_2\})$ $(\{y\}, \{C_1, C_2\}, \{C_1\})$ $(\{y\}, \{C_1, C_2\}, \{C_1\})$ $(\phi, \{z, C_1, C_2\}, \{C_2\})$

 $(\{C_1, C_2\}, \{x, y, z\}, \{C_1, C_2\})$

 $f = (x \vee y) \notin (x \vee -z)$ -2 Z Y $(\{y\}, \{C_1, C_2\}, \{C_1\})$

$(\phi, \{z, C_1, C_2\}, \{C_2\})$

f=(x v y) キ (x v -12)

Equality of res of two RS

Reduction from VALIDITY in DNF

$f = (x \notin y) \vee (x \notin \neg z) \vee z$

conP-complete

f=(x & y) v (x & -12) v z

First RS $(\phi, \phi, \{\text{True}\})$

 $S = \{x, y, z, True\}$

f=(x を y) v (x を -z) v z

Second RS $(\{x, y\}, \phi, \{True\})$ $(\{x\}, \{z\}, \{True\})$ $(\{z\}, \phi, \{True\})$

f=(x & y) v (x & -12) v z

z y True

 $(\{z\}, \phi, \{True\})$ $(\{x, y\}, \phi, \{True\})$ $(\{x\}, \{z\}, \{True\})$

f=(xキy)v(xキーz)vz

First RS

second RS

Since f is valid, the two systems describe the same result function

Reachability

We have already seen how to simulate bounded-tape TM

Reachability for bounded-tape TM is PSPACE-complete... ...and also for RS

NP-complete

Equality of result functions Existence of a Garden of Eden

conP-complete

Reachability
Existence of a global attractor

PSPACE-complete

RS for computing

Uniform Families of RS

Input x of length n

x ---->T subset of Sn

Uniform Families of RS

- RS can be simulated by TM with polynomial slowdown (and viceversa)...
- ...hence, we need to select
 two very weak TM for
 the uniformity condition

Uniform Families of RS

- We need to take advantage of parallelism in RS
- @ What can they do in sublinear time?
- Sexplore the relation with languages recognised by real-time CA

Thank you for your altention! Dziękuje za uwagę!

Questions?