What do we know (and what we done) about the computational complexity of Reaction systems

Luca Manzoni

 Antonio E. PorrecaOucline

- Dynamical behaviours
- Detection of behaviours
- Using RS for compuling

Dynamical behaviours

Dynamical
BehavioursFixed point
 Cycle

Dynamical Behaviours

Fixed point aldraclor

Attractor Cycle

Dynamical Behaviours

(Fixed poinl) global attractor

Dynamical
Behaviours

Garden of Eden

Path from T to U

Decection of behaviours

Fill the blanks

Does [Reaction system] given [additional parameters] exhibit [dynamical behaviour]?

Fixed Point attractor

Does $A=(S, A)$

given a fixed point T
exhibit a state $0 \neq T$ such that $\operatorname{resa}(U)=T$?

Equality of RS

Does $A=(S, A) \quad B=(S, B)$
given [nothing more]
exhibit the same result function?

Reachability

Does $A=(S, A)$
given T, U subsets of S
exhibit a path from T to U ?

Fixed Point attractor

Reduction from SAT in CNF

$$
f=(\underbrace{x \vee y}_{C_{1}}) \&(\underbrace{x \vee \neg z}_{c_{2}})
$$

NP-complete

$$
\begin{gathered}
f=(x \vee y) \notin(x \vee \neg z) \\
s=\left\{x, y, z, c_{1}, c_{2}\right\} \\
\left(\left\{C_{1}, C_{2}\right\},\{x, y, z\},\left\{C_{1}, c_{2}\right\}\right) \\
\left(\{x\},\left\{C_{1}, c_{2}\right\},\left\{C_{1}, c_{2}\right\}\right) \\
\left(\{y\},\left\{c_{1}, C_{2}\right\},\left\{C_{1}\right\}\right) \\
\left(\phi,\left\{z, c_{1}, c_{2}\right\},\left\{c_{2}\right\}\right)
\end{gathered}
$$

$f=(x \vee y) \notin(x \vee \neg z)$

$$
\begin{gathered}
\left(\{y\},\left\{C_{1}, C_{2}\right\},\left\{C_{1}\right\}\right) \\
\left(\phi,\left\{z, C_{1}, C_{2}\right\},\left\{C_{2}\right\}\right) \\
\left(\left\{C_{1}, C_{2}\right\},\{x, y, z\},\left\{C_{1}, C_{2}\right\}\right)
\end{gathered}
$$

$$
f=(x \vee y) \notin(x \vee \neg z)
$$

$$
\left(\phi,\left\{z, C_{1}, C_{2}\right\},\left\{C_{2}\right\}\right)
$$

$$
f=(x \vee y) \notin(x \vee-z)
$$

$$
f=(x \vee y) \notin(x \vee-z)
$$

Equalily of res of lwo RS

Reduction from VALIDITY in DNF

$$
f=(\underbrace{x \notin y}) \vee(\underbrace{x \notin \neg z}) \vee z
$$

coNP-complete

$$
f=(x \notin y) \vee(x \notin \neg z) \vee z
$$

First RS
$(\phi, \phi,\{$ True $\}$)

$S=\{x, y, z$, True $\}$

$$
f=(x \notin y) \vee(x \notin \neg z) \vee z
$$

Second RS

$$
\begin{aligned}
& (\{x, y\}, \phi,\{\text { True }\}) \\
& (\{x\},\{z\},\{\text { True }\}) \\
& (\{z\}, \phi,\{\text { True }\})
\end{aligned}
$$

$$
f=(x \notin y) \vee(x \notin \neg z) \vee z
$$

Second RS

$$
\begin{aligned}
(\{z\}, \phi,\{\text { True }\}) & (\{x, y\}, \phi,\{\text { True }\}) \\
& (\{x\},\{z\},\{\text { True }\})
\end{aligned}
$$

$$
f=(x \notin y) \vee(x \notin-z) \vee z
$$

First RS Second RS

Since f is valid, the two systems describe the same result function

Reachability

We have already seen how to simulate bounded-tape TM

Reachability for bounded-tape TM is PSPACE-complete... ...and also for RS

- Existence of a fixed point
- Existence of a fixed point attractor
- Equality of result functions
- Existence of a Garden of Eden
- Reachability
- Existence of a global attractor

RS for computing

Uniform Families of RS

Input x of length n

Uniform Families
of RS

- RS can be simulated by TM with polynomial slowdown (and viceversa)...
- ...hence, we need to select two very weak TM for the uniformity condition

Uniform Families
of RS

- We need to lake advantage of parallelism in RS
- What can they do in sublinear time?
- Explore the relation with languages recognised by real-kime CA

Thank you for your attention!
Dziękuje za uwagẹ!

Questions?

