
Na turel

Ca lcul

Mo dèles de
42

20

11

AntoNio E. PorReca

aeporreca.org/mocana

https://aeporreca.org/mocana

Modèles de calcul
traditionnels

Machines de Turing

Alan Turing (1912–1954)

Machine de Turing =
calculateur humain avec

papier et crayon

Calculateurs humains
NACA (Comité consultatif national 
pour l’aéronautique), USA, 1950s

– Alan M. Turing, On computable numbers

« Normalement on calcule en écrivant certains
symboles sur le papier. […] Je considère qu’on

effectue le calcul sur un papier unidimensionnel,
c’est-à-dire, sur un ruban divisé en carrés. »

Papier 2D vs ruban 1D

A B C

D E F

G H I

J K L

A B C

D E F

G H I

J K L

A B C ; D E F ; G H I ; J K L

Papier 2D vs ruban 1D

A B C

D E F

G H I

J K L

M N O

P Q R

S T U

V W X

E F ; G H I ; J K L : M N O ; P Q R ; S T

Papier 2D vs ruban 1D

– Alan M. Turing, On computable numbers

« Je suppose aussi que le nombre de symboles
qu’on peut écrire soit fini. Si on permettait une

infinité de symboles, il y aurait des symboles qui
diffèrent dans une mesure arbitrairement faible […]

On peut toujours utiliser une séquence de symboles
au lieu d’un symbole simple. »

Symboles atomiques
vs composites

1982

Symboles atomiques
vs composites

1982 1 9 8 2

– Alan M. Turing, On computable numbers

« La différence, de notre point de vue, entre les
symboles simples et composites est qu’on ne peut
pas observer les symboles composites en un coup

d’œil, s’ils sont trop longs. Cela est conforme à
l’expérience. On ne peut pas établir en un coup
d’œil si 9999999999999999 et 999999999999999

sont égales. »

0 1 1 0 0 1 1 0 1 0 0 1 0 0

« Champ visuel »

🤔

0 1 1 0 0 1 1 0 1 0 0 1 0 0

« Champ visuel »

🤔

0 1 1 0 0 1 1 0 1 0 0 1 0 0

« Champ visuel »

🤔

0 1 1 0 0 1 1 0 1 0 0 1 0 0

« Champ visuel »

🤔

0 1 1 0 0 1 1 0 1 0 0 1 0 0

« Champ visuel »

🤔

0 1 1 0 0 1 1 0 1 0 0 1 0 0

« Champ visuel »

🤔

– Alan M. Turing, On computable numbers

« Le comportement du calculateur à chaque
moment est déterminé par le symbole qu’il observe

et son “état d’esprit” à ce moment. »

12932 +
19 =

« États d’esprit »

🤔

✏J’ai lu le
chiffre 2

12932 +
19 =

« États d’esprit »

🤔

✏
J’ai lu le

chiffre 2 et le
chiffre 9

12932 +
19 =

« États d’esprit »

🤔✏

Il faut que
j’écrive 1 et que je

garde 1 comme
retenue

12932 +
19 =

1

« États d’esprit »

🤔✏

Il faut que je
me déplace à

gauche ; la
retenue est 1

12932 +
19 =

1

« États d’esprit »

🤔

✏ J’ai lu le
chiffre 3 ; avec la
retenue de 1 ça

fait 4

12932 +
19 =

1

« États d’esprit »

🤔

✏
J’ai lu 4 et le

chiffre 1

12932 +
19 =

1

« États d’esprit »

🤔✏

Il faut que
j’écrive 5 ; pas

de retenue

12932 +
19 =

1

« États d’esprit »

🤔

Il faut que je
me déplace à

gauche

5 ✏

– Alan M. Turing, On computable numbers

« On suppose également que le nombre d’états
d’esprit qu’on doit prendre en compte soit fini. Les

raisons pour cela sont de la même nature que
celles qui restreignent le nombre de symboles. »

🤔

J’ai lu la
séquence

9999999999

États d’esprit trop proches

États d’esprit trop proches

😕

J’ai lu la
séquence

9999999999

J’ai lu la
séquence
999999999

– Alan M. Turing, On computable numbers

« On peut éviter l’utilisation d’états d’esprit plus
compliqués en écrivant plus de symboles sur le

ruban. »

🤔

Le résultat
partiel est

9999999999

Prendre note sur le ruban

🤔

Le résultat
partiel est

9999999999

Prendre note sur le ruban

Le résultat
partiel est écrit

sur le ruban

Calculateurs
électroniques

Équations de Maxwell

∇ ⋅ E =
ρ
ε0

∇ ⋅ B = 0

∇ × E = −
∂B
∂t

∇ × B = μ0 (J + ε0
∂E
∂t)

Calculateurs
mécaniques

Photo by CEphoto, Uwe Aranas https://commons.wikimedia.org/wiki/File:Mechanical-calculator-Brunsviga-15-01.jpg

https://commons.wikimedia.org/wiki/File:Mechanical-calculator-Brunsviga-15-01.jpg

Calculateurs
gravitationnels

Calculer avec la gravité

🍎

🤏

🍎

Calculer avec la gravité

🍎

=
2h
g⏱

Calculer avec la gravité

🍎

🤏

Calculer avec la gravité

🍎

📏
🤏

h =
xg
2

Calculer avec la gravité

🍎

⏱

h =
xg
2

=
2h
g

Calculer avec la gravité

🍎

⏱
=

2(xg/2)
gh =

xg
2

=
2h
g

Calculer avec la gravité

🍎

⏱
=

2(xg/2)
g

= x

h =
xg
2

=
2h
g

Calculer avec la gravité

Dynamical systems
and their algebra

Finite, discrete-time dynamical systems
Just a finite set with a transition function (A, f)

1

2

3

0

4

5

f

f

f f

f

f

Finite, discrete-time dynamical systems
Just a finite set with a transition function modulo isomorphism(A, f)

General shape of a dynamical system
A few limit cycles

General shape of a dynamical system
A few limit cycles with trees going in

General shape of a dynamical system
A few limit cycles with trees going in

General shape of a dynamical system
A few limit cycles with trees going in

C3(, , ,) + C5(, , , ,) + C1()

General shape of a dynamical system
A few limit cycles with trees going in

C3(, , ,) + C5(, , , ,) + C1()

+ +

Discrete (finite, deterministic)
dynamical systems up to isomorphisms

b

fe

c

da

4

65

2 31

52

Discrete (finite, deterministic)
dynamical systems up to isomorphisms

b

fe

c da

4

65

2 31

=

53

An example
from engineering

54

Traffic lights

55

Traffic lights

55

Traffic lights

55

Traffic lights

55

Traffic lights

55

An example
from science

56

1 year

1.5 years

A planetary system

🌞🌍🪐

57

1 year

1.5 years

A planetary system

🌞🌍🪐

57

1 year

1.5 years

A planetary system

🌞🌍🪐

58

1 year

1.5 years

A planetary system

🌞🌍🪐

58

Evolution in time

🌞🌍🪐

59

Evolution in time

🌞 🌍

🪐

🌞🌍🪐

6 months

59

Evolution in time

🌞 🌍

🪐

🌞🌍

🪐

🌞🌍🪐

6 months

6 months

59

Evolution in time

🌞 🌍

🪐

🌞🌍

🪐

🌞🪐 🌍🌞🌍🪐

6 months

6 months

6 months

59

Evolution in time

🌞 🌍

🪐

🌞🌍

🪐

🌞🪐 🌍

🌞🌍

🪐

🌞🌍🪐

6 months

6 months

6 m
on

ths

6 months

59

Evolution in time

🌞 🌍

🪐

🌞🌍

🪐

🌞🪐 🌍

🌞🌍

🪐

🌞 🌍

🪐

🌞🌍🪐

6 months

6 months

6 months

6 m
on

ths

6 months

59

Evolution in time

🌞 🌍

🪐

🌞🌍

🪐

🌞🪐 🌍

🌞🌍

🪐

🌞 🌍

🪐

🌞🌍🪐

6 months

6 months

6 months

6 m
on

ths

6 months

6 months

59

Decomposing the system

60

🌞🌍

Decomposing the system

60

🌞🌍

🌞 🌍

Decomposing the system

6 m
onths

60

🌞🌍

🌞 🌍

Decomposing the system
6

m
on

th
s 6 m

onths
60

🌞🌍

🌞 🌍

Decomposing the system

🌞🪐

6
m

on
th

s 6 m
onths

60

🌞🌍

🌞 🌍

Decomposing the system

🌞

🪐

🌞🪐

6
m

on
th

s 6 m
onths

6 months

60

🌞🌍

🌞 🌍

Decomposing the system

🌞

🪐

🌞

🪐

🌞🪐

6
m

on
th

s 6 m
onths

6 months

6
m

on
th

s

60

🌞🌍

🌞 🌍

Decomposing the system

🌞

🪐

🌞

🪐

🌞🪐

6
m

on
th

s 6 m
onths

6 months

6
m

on
th

s6 months

60

🌞🌍

🌞 🌍

Decomposing the system

🌞

🪐

🌞

🪐

🌞🪐

6
m

on
th

s 6 m
onths

6 months

6
m

on
th

s6 months
×

60

What if our instruments
are less sophisticated?

61

Abstract evolution
of the system

62

Abstract evolution
of the system

× =

62

Product of
dynamical systems

63

Product of systems

× =

64

Give temporary names
to the states

c

a
b

1

2

× =

65

Compute the
Cartesian product

c,1

c,2

a,2
b,2

a,1
b,1

c

a
b

1

2

× =

66

Add the arcs between states

c,1

c,2

a,2
b,2

a,1
b,1

c

a
b

1

2

× =

67

Forget the names once again

× =

68

Back to our
planetary system

69

Decomposition

70

Decomposition

× =

70

Decomposition

b,3

a,3

b,1

a,2a,1

b,2

b

2

31

a

× =

71

Any other
decomposition?

72

Another decomposition

=

73

Another decomposition

× =

73

Another decomposition

a,5

a,2

a,3

a,4a,6

a,1

a × =

5

2

3

46

1

74

More concretely…

75

More concretely…

🌞
🪐

🌞 🪐

🌞
🪐

🌞
🪐

🌞🪐

🌞
🪐

6
m

on
th

s

6 months
6 months

6
m

on
th

s

6 months

6 months

75

More concretely…

🌞
🪐

🌞 🪐

🌞
🪐

🌞
🪐

🌞🪐

🌞
🪐

6
m

on
th

s

6 months
6 months

6
m

on
th

s

6 months

6 months

×

75

More concretely…

🌞
🪐

🌞 🪐

🌞
🪐

🌞
🪐

🌞🪐

🌞
🪐

6
m

on
th

s

6 months
6 months

6
m

on
th

s

6 months

6 months

×
🌞

6 months

75

Untangling complex
systems

76

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

77

Traffic lights at a crossroads

🤔
77

Traffic lights at a crossroads

78

Traffic lights at a crossroads

+ +

78

More abstractly…

×

=

+ +

79

Isomorphism
of dynamical systems
in polynomial time

Tree canonisation
A polynomial-time algorithm

👉

Tree canonisation
A polynomial-time algorithm

👉

Tree canonisation
A polynomial-time algorithm

👉

Tree canonisation
A polynomial-time algorithm

👉

1

Tree canonisation
A polynomial-time algorithm

👉

1

Tree canonisation
A polynomial-time algorithm

👉

1

Tree canonisation
A polynomial-time algorithm

👉

1 1

Tree canonisation
A polynomial-time algorithm

👉

1 1

Tree canonisation
A polynomial-time algorithm

👉

1 1

Tree canonisation
A polynomial-time algorithm

👉

1 1

Tree canonisation
A polynomial-time algorithm

👉

1

1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1

1

Tree canonisation
A polynomial-time algorithm

👉1

1

1

Tree canonisation
A polynomial-time algorithm

👉1

1 1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1

Tree canonisation
A polynomial-time algorithm

👉
1

1 1

3,1,1
1

6,1,1,3,1,1

1

Tree canonisation
A polynomial-time algorithm

👉
1

1 1

3,1,1
1

6,1,1,3,1,1

1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1

1

Tree canonisation
A polynomial-time algorithm

👉1

1 1

3,1,1
1

6,1,1,3,1,1

1

1

Tree canonisation
A polynomial-time algorithm

👉1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1

1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

👉

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1

1 1

3,1,1

4,3,1,1
1

Tree canonisation
A polynomial-time algorithm

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1
1

1 1

3,1,1

4,3,1,1

👉

Tree canonisation
A polynomial-time algorithm

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1
1

1 1

3,1,1

4,3,1,1

15,1,3,1,1,4,3,1,1,6,1,1,3,1,1
👉

Tree canonisation
A polynomial-time algorithm

1

1 1

3,1,1
1

6,1,1,3,1,1

1 1

3,1,1
1

1 1

3,1,1

4,3,1,1

15,1,3,1,1,4,3,1,1,6,1,1,3,1,1

• if the systems have cycles of different length then return false

• let and be the sequences of trees of the two systems

• for each rotation of do

• compare and elementwise in order

• if each pair of trees is isomorphic then return true

• return false

TA TB

R TB

R TA

Another polynomial-time algorithm

Connected dynamical system isomorphism

• A dynamical system is a multiset of connected 
dynamical systems (more about this later…)

• Checking multiset equality can be done naively 
with a quadratic number of element comparisons

• And we’ve seen that each comparison can be done 
in polynomial time

• This means that the set of dynamical systems 
is different from a more general set of graphs 
(nondeterministic dynamical systems), 
where the isomorphism problem is presumably hard

It can also be done in polynomial time
General dynamical system isomorphism

Even easier than that…
Isomorphism of dynamical systems

Planar Graph Isomorphism is in Log-Space

Samir Datta∗ , Nutan Limaye† , Prajakta Nimbhorkar† , Thomas Thierauf‡ , Fabian Wagner§

∗Chennai Mathematical Institute

Email: sdatta@cmi.ac.in

†The Institute of Mathematical Sciences, Chennai

Email: {nutan,prajakta}@imsc.res.in

‡Fakultät für Elektronik und Informatik, HTW Aalen

Email: thomas.thierauf@uni-ulm.de

§Institut für Theoretische Informatik, Universität Ulm

Email: fabian.wagner@uni-ulm.de

Abstract

Graph Isomorphism is the prime example of a compu-

tational problem with a wide difference between the best

known lower and upper bounds on its complexity. There is

a significant gap between extant lower and upper bounds for

planar graphs as well. We bridge the gap for this natural

and important special case by presenting an upper bound

that matches the known log-space hardness [JKMT03]. In

fact, we show the formally stronger result that planar graph

canonization is in log-space. This improves the previously

known upper bound of AC1 [MR91].

Our algorithm first constructs the biconnected component

tree of a connected planar graph and then refines each

biconnected component into a triconnected component tree.

The next step is to log-space reduce the biconnected planar

graph isomorphism and canonization problems to those

for 3-connected planar graphs, which are known to be

in log-space by [DLN08]. This is achieved by using the

above decomposition, and by making significant modifica-

tions to Lindell’s algorithm for tree canonization, along with

changes in the space complexity analysis.

The reduction from the connected case to the biconnected

case requires further new ideas, including a non-trivial case

analysis and a group theoretic lemma to bound the number

of automorphisms of a colored 3-connected planar graph.

This lemma is crucial for the reduction to work in log-space.

1. Introduction

The graph isomorphism problem GI consists of deciding

whether there is a bijection between the vertices of two

graphs, which preserves the adjacency relations. The wide

gap between the known lower and upper bounds has kept

alive the research interest in GI.

‡Supported by DFG grants Scho 302/7-2.

§Supported by DFG grants TO 200/2-2.

The problem is clearly in NP and by a group theoretic

proof also in SPP [AK06]. This is the current frontier of

our knowledge as far as upper bounds go. The inability to

give efficient algorithms for the problem would lead one

to believe that the problem is provably hard. NP-hardness

is precluded by a result that states if GI is NP-hard then

the polynomial time hierarchy collapses to the second level

[BHZ87], [Sch88]. What is more surprising is that not even

P-hardness is known for the problem. The best we know

is that GI is hard for DET [Tor04], the class of problems

NC1-reducible to the determinant, defined by Cook [Coo85].

While this enormous gap has motivated a study of iso-

morphism in general graphs, it has also induced research in

isomorphism restricted to special cases of graphs where this

gap can be reduced. Tournaments are an example of directed

graphs where the DET lower bound is preserved [Wag07],

while there is a quasi-polynomial time upper bound [BL83].

Trees are an example of graphs where the lower and

upper bounds match and are L [Lin92]. Note that for trees,

the problem’s complexity crucially depends on the input

encoding: if the trees are presented as strings then the lower

and upper bound are NC1 [MJT98], [Bus97]). Lindell’s log-

space result has been extended to partial 2-trees, also known

as generalized series-parallel graphs [ADK08]. Trees and

partial 2-trees are special cases of planar graphs.

In this paper we consider planar graph isomorphism and

settle its complexity by significantly improving the known

upper bound of AC1 . The result is particularly satisfying,

because Planar Graph Isomorphism turns out to be complete

for a well-known and natural complexity class, namely log-

space: L.
Planar Graph Isomorphism has been studied in its own

right since the early days of computer science. Wein-

berg [Wei66] presented an O(n2) algorithm for testing

isomorphism of 3-connected planar graphs. Hopcroft and

Tarjan [HT74] extended this to general planar graphs, im-

proving the time complexity to O(n log n). Hopcroft and

Wong [HW74] further improved it to O(n). Recently Kuk-

luk, Holder, and Cook [KHC04] gave an O(n2) algorithm

2009 24th Annual IEEE Conference on Computational Complexity

978-0-7695-3717-7/09 $25.00 © 2009 IEEE

DOI 10.1109/CCC.2009.16

203

2009 24th Annual IEEE Conference on Computational Complexity

978-0-7695-3717-7/09 $25.00 © 2009 IEEE

DOI 10.1109/CCC.2009.16

203

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on September 23,2020 at 14:46:49 UTC from IEEE Xplore. Restrictions apply.

Even easier than that…
Isomorphism of dynamical systems

Planar Graph Isomorphism is in Log-Space

Samir Datta∗ , Nutan Limaye† , Prajakta Nimbhorkar† , Thomas Thierauf‡ , Fabian Wagner§

∗Chennai Mathematical Institute

Email: sdatta@cmi.ac.in

†The Institute of Mathematical Sciences, Chennai

Email: {nutan,prajakta}@imsc.res.in

‡Fakultät für Elektronik und Informatik, HTW Aalen

Email: thomas.thierauf@uni-ulm.de

§Institut für Theoretische Informatik, Universität Ulm

Email: fabian.wagner@uni-ulm.de

Abstract

Graph Isomorphism is the prime example of a compu-

tational problem with a wide difference between the best

known lower and upper bounds on its complexity. There is

a significant gap between extant lower and upper bounds for

planar graphs as well. We bridge the gap for this natural

and important special case by presenting an upper bound

that matches the known log-space hardness [JKMT03]. In

fact, we show the formally stronger result that planar graph

canonization is in log-space. This improves the previously

known upper bound of AC1 [MR91].

Our algorithm first constructs the biconnected component

tree of a connected planar graph and then refines each

biconnected component into a triconnected component tree.

The next step is to log-space reduce the biconnected planar

graph isomorphism and canonization problems to those

for 3-connected planar graphs, which are known to be

in log-space by [DLN08]. This is achieved by using the

above decomposition, and by making significant modifica-

tions to Lindell’s algorithm for tree canonization, along with

changes in the space complexity analysis.

The reduction from the connected case to the biconnected

case requires further new ideas, including a non-trivial case

analysis and a group theoretic lemma to bound the number

of automorphisms of a colored 3-connected planar graph.

This lemma is crucial for the reduction to work in log-space.

1. Introduction

The graph isomorphism problem GI consists of deciding

whether there is a bijection between the vertices of two

graphs, which preserves the adjacency relations. The wide

gap between the known lower and upper bounds has kept

alive the research interest in GI.

‡Supported by DFG grants Scho 302/7-2.

§Supported by DFG grants TO 200/2-2.

The problem is clearly in NP and by a group theoretic

proof also in SPP [AK06]. This is the current frontier of

our knowledge as far as upper bounds go. The inability to

give efficient algorithms for the problem would lead one

to believe that the problem is provably hard. NP-hardness

is precluded by a result that states if GI is NP-hard then

the polynomial time hierarchy collapses to the second level

[BHZ87], [Sch88]. What is more surprising is that not even

P-hardness is known for the problem. The best we know

is that GI is hard for DET [Tor04], the class of problems

NC1-reducible to the determinant, defined by Cook [Coo85].

While this enormous gap has motivated a study of iso-

morphism in general graphs, it has also induced research in

isomorphism restricted to special cases of graphs where this

gap can be reduced. Tournaments are an example of directed

graphs where the DET lower bound is preserved [Wag07],

while there is a quasi-polynomial time upper bound [BL83].

Trees are an example of graphs where the lower and

upper bounds match and are L [Lin92]. Note that for trees,

the problem’s complexity crucially depends on the input

encoding: if the trees are presented as strings then the lower

and upper bound are NC1 [MJT98], [Bus97]). Lindell’s log-

space result has been extended to partial 2-trees, also known

as generalized series-parallel graphs [ADK08]. Trees and

partial 2-trees are special cases of planar graphs.

In this paper we consider planar graph isomorphism and

settle its complexity by significantly improving the known

upper bound of AC1 . The result is particularly satisfying,

because Planar Graph Isomorphism turns out to be complete

for a well-known and natural complexity class, namely log-

space: L.
Planar Graph Isomorphism has been studied in its own

right since the early days of computer science. Wein-

berg [Wei66] presented an O(n2) algorithm for testing

isomorphism of 3-connected planar graphs. Hopcroft and

Tarjan [HT74] extended this to general planar graphs, im-

proving the time complexity to O(n log n). Hopcroft and

Wong [HW74] further improved it to O(n). Recently Kuk-

luk, Holder, and Cook [KHC04] gave an O(n2) algorithm

2009 24th Annual IEEE Conference on Computational Complexity

978-0-7695-3717-7/09 $25.00 © 2009 IEEE

DOI 10.1109/CCC.2009.16

203

2009 24th Annual IEEE Conference on Computational Complexity

978-0-7695-3717-7/09 $25.00 © 2009 IEEE

DOI 10.1109/CCC.2009.16

203

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on September 23,2020 at 14:46:49 UTC from IEEE Xplore. Restrictions apply.

The category of
dynamical systems

D

The inspiration
The category of endomaps of sets

• The objects are the dynamical systems

• An arrow is a function  
which commutes with and

(A, f)

(A, f) φ (B, g) φ : A → B
f g

A A

B B

f

g

φ φ

Objects & arrows 🏹

• In graph-theoretic terms, it’s just the disjoint union

• This represents the alternative execution of and

• The identity is the empty system

(A, f) + (B, g) = (A ⊎ B, f + g) with (f + g)(x) = {f(x) if x ∈ A
g(x) if x ∈ B

A B

0 = (∅, ∅)

Necessary but not that interesting
The category has sums (coproducts)D

+ =

• In graph-theoretic terms, it’s the tensor product

with

• This represents the synchronous execution of and

• The identity is the singleton system

(A, f) × (B, g) = (A × B, f × g)

(f × g)(a, b) = (f(a), g(b))

A B

1 = ({0}, id)

Now we’re talking!
The category admits productsD

Introducing: the
multiplication table,
poster-size

⇥

⇥

⇥

⇥

⇥

Prettier version
⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3

Products “preserve” behaviours
 is a minor of for A A × B B ≠ ∅

× =

Products “preserve” behaviours
 is a minor of for A A × B B ≠ ∅

× =

Products “preserve” behaviours
 is a minor of for A A × B B ≠ ∅

× =

Products “preserve” behaviours
 is a minor of for A A × B B ≠ ∅

× =

more precisely: a connected  
is a minor of each connected
component of for

A

A × B B ≠ 0

The semiring of
dynamical systems

D

• Product is (modulo isomorphism) commutative, associative and
has identity in any category where it exists; so, it’s 
a commutative monoid

• Sum is (modulo isomorphism) commutative, associative and has
identity in any category where it exists; so, another
commutative monoid

• The sum is the free commutative monoid (i.e., the multisets) 
over the set of connected, nonempty dynamical systems

• The distributive law and the product annihilation law do not hold
for arbitrary categories, but they do here

1 = ({0}, id)

0 = (∅, ∅)

Like a ring, without subtraction
 (modulo isomorphisms) is a semiringD

 and behave as with nonnegative
integers (a commutative semiring)

+ ×

104

 and behave as with nonnegative
integers (a commutative semiring)

+ ×

• Commutative: and X + Y = Y + X X × Y = Y × X

104

 and behave as with nonnegative
integers (a commutative semiring)

+ ×

• Commutative: and X + Y = Y + X X × Y = Y × X

• Associative: and X + (Y + Z) = (Y + X) + Z
X × (Y × Z) = (Y × X) × Z

104

 and behave as with nonnegative
integers (a commutative semiring)

+ ×

• Commutative: and X + Y = Y + X X × Y = Y × X

• Associative: and X + (Y + Z) = (Y + X) + Z
X × (Y × Z) = (Y × X) × Z

• Neutral elements: and ∅ + X = X × X = X

104

 and behave as with nonnegative
integers (a commutative semiring)

+ ×

• Commutative: and X + Y = Y + X X × Y = Y × X

• Associative: and X + (Y + Z) = (Y + X) + Z
X × (Y × Z) = (Y × X) × Z

• Neutral elements: and ∅ + X = X × X = X

• Distributive: X × (Y + Z) = X × Y + X × Z

104

 and behave as with nonnegative
integers (a commutative semiring)

+ ×

• Commutative: and X + Y = Y + X X × Y = Y × X

• Associative: and X + (Y + Z) = (Y + X) + Z
X × (Y × Z) = (Y × X) × Z

• Neutral elements: and ∅ + X = X × X = X

• Distributive: X × (Y + Z) = X × Y + X × Z

• Multiplication by zero: ∅ × X = ∅

104

No unique
factorisation 😭

Multiplication table
⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3

⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3

⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3

⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3

⇥ ?

? ? ? ? ? ? ? ?

?

?

?

?

?

?

Figure 1: Multiplication table for dynamical systems of size 0, 1, 2, and some of size 3.

the set D gives a commutative monoid (D,⇥). Dually, the categorical sum enjoys the
same properties, giving another commutative monoid (D,+) with identity 0. Although
the distributive law of product over sum and the product annihilation law do not hold for
arbitrary categories, this is indeed the case for dynamical systems [1, page 223], which
completes the proof. ⇤

Theorem 3. (N,+,⇥) is (isomorphic to) a subsemiring of (D,+,⇥).

Proof. Let ' : N ! D be the function defined as

'(n) = the dynamical system consisting of exactly n fixed points

or, more formally, '(n) = ({0, . . . , n � 1}, idn) with the appropriate identity function
over n elements. Then we have '(0) = 0 and '(1) = 1; furthermore, we have '(m+ n) =
'(m)+'(n) and '(m⇥n) = '(m)⇥'(n). Finally, if '(m) = '(n) then necessarily m = n,
which shows that ' is injective and thus that its image is isomorphic to N. ⇤

The subsemiring N of D behaves as expected with respect to the multiplication by
any dynamical system A 2 D, that is, for each n 2 N, multiplying by n amounts to

3

• The systems and are irreducible

• Any system with a prime number of states is irreducible, 
since the state space is a cartesian product

• So has two distinct factorisations into irreducibles

= ×

= ×

And the counterexample is minuscule
No unique factorisation

Systems with arbitrarily
many factorisations

Theorem
For each , there exist a dynamical system with at least factorisationsn n

Theorem
For each , there exist a dynamical system with at least factorisationsn n

()n

Theorem
For each , there exist a dynamical system with at least factorisationsn n

()n = × ()n−1

Theorem
For each , there exist a dynamical system with at least factorisationsn n

()n = × ()n−1

= × ()n−2()2

Theorem
For each , there exist a dynamical system with at least factorisationsn n

()n = × ()n−1

= × ()n−2()2

= ⋯ = ×()n−1

A notable subsemiring

• is initial in the category of semirings

• Meaning that there is only one homomorphism

• In the case of , the homomorphism is injective, since  
is the free monoid over connected, nonempty dynamical systems

• So contains a isomorphic copy of

ℕ

φ : ℕ → D

φ(n) = 1 + 1 + ⋯ + 1
n times

= + + ⋯+
n times

D (D, +)

D ℕ

This means trouble
 is a subsemiring of ℕ D

Polynomial equations

• Consider the equation

• There is least one solution

For the analysis of complex systems
Polynomial equations over D

X = Y = Z =

X + Y2 = Z +

• A ring has additive inverses (aka, it has subtraction)

• Each polynomial equation in a ring can be written as

• This is not the case for our semiring, which has no subtraction

• The general polynomial equation has the form
with two polynomials

p(⃗X) = 0

p(⃗X) = q(⃗X)
p, q ∈ D[⃗X]

As opposed to rings
Polynomial equations in semirings

Undecidability of
polynomial equations

• We have showed that is a subsemiring of

• But sometimes enlarging the solution space makes the problem
actually easier: given

• Finding if has solution in is undecidable

• Finding if has solution in is decidable

• Finding if has solution in is trivial

• So, what about finding solutions in ?

ℕ D

p, q ∈ ℕ[⃗X]

p(⃗X) = q(⃗X) ℕ

p(⃗X) = q(⃗X) ℝ

p(⃗X) = q(⃗X) ℂ

D

The spectre of Hilbert’s 10th problem is haunting D
Undecidability of polynomial equations

• Let and with

• Then has the non-natural solution

• But, of course, it also has the natural solution ,

• Notice how and

• This is not a coincidence!

p(X, Y) = 2X2 q(X, Y) = 3Y
p, q ∈ ℕ[X, Y] ≤ D[X, Y]

2X2 = 3Y

X = Y = 2

X′ = 3 Y′ = 6

X′ = |X | Y′ = |Y |

With non-natural solutions
Natural polynomial equations

•

•

• Since is the disjoint union, we have

• Since is the cartesian product, we have

|∅ | = 0

| | = 1

+

|A + B | = |A | + |B |

×

|AB | = |A | × |B |

It’s a semiring homomorphism
The function “size” | ⋅ | : D → ℕ

Of degree over the variables ≤ d ⃗X = (X1, …, Xk)
Notation for polynomials p ∈ D[⃗X]

p = ∑
⃗i∈{0,…,d}k

a ⃗i
⃗X ⃗i

where ⃗X ⃗i =
k

∏
j=1

Xij
j

Of degree over the variables ≤ d ⃗X = (X1, …, Xk)
Notation for polynomials p ∈ D[⃗X]

p = ∑
⃗i∈{0,…,d}k

a ⃗i
⃗X ⃗i

where ⃗X ⃗i =
k

∏
j=1

Xij
j

for instance (X, Y, Z)(2,4,3) = X2Y4Z3

• If a polynomial equation over has a solution 
in , then it also has a solution in

• In the larger semiring we may find extra solutions, 
but only if the equation is already solvable over the naturals

• Then, by reduction from Hilbert’s 10th problem, we obtain
the undecidability in of equations over …

• …and thus of arbitrary equations over

ℕ[X1, …, Xk]
Dk ℕk

D

D ℕ[⃗X]

D[⃗X]

Solvability of natural equations
Theorem

Proof
Consider with p(⃗X) = q(⃗X) p, q ∈ ℕ[⃗X]

∑
i∈{0,…,d}k

a ⃗i
⃗X ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗X ⃗i

Proof
Suppose that is a solution⃗A ∈ Dk

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i

Proof
Apply the size function | ⋅ |

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i

Proof
The size function is a homomorphism| ⋅ |

∑
i∈{0,…,d}k

a ⃗i
⃗A ⃗i = ∑

i∈{0,…,d}k

b ⃗i
⃗A ⃗i

∑
i∈{0,…,d}k

|a ⃗i | | ⃗A ⃗i | = ∑
i∈{0,…,d}k

|b ⃗i | | ⃗A ⃗i |

Proof
The size function is a homomorphism| ⋅ |

∑
i∈{0,…,d}k

a ⃗i | ⃗A ⃗i | = ∑
i∈{0,…,d}k

b ⃗i | ⃗A ⃗i |

Proof
The coefficients are natural

∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

Aij
j = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

Aij
j

Proof
We have ⃗A ⃗i = ∏k

j=1 Aij
j

∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

|Aij
j | = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

|Aij
j |

Proof
The size function is a homomorphism| ⋅ |

∑
i∈{0,…,d}k

a ⃗i

k

∏
j=1

|Aj |
ij = ∑

i∈{0,…,d}k

b ⃗i

k

∏
j=1

|Aj |
ij

Proof
The size function is a homomorphism| ⋅ |

Proof
So is also a solution, QED| ⃗A | = (|A1 | , …, |Ak |)

p(|A1 | , …, |Ak |) = q(|A1 | , …, |Ak |)

Equations with
non-natural coefficients

• Consider, for instance

• This equation has solution

	 	 	 	 	 	

• But there is no natural solution, because the RHS 
is non-natural and cannot be made natural by adding stuff

X2 = Y +

X = Y = 2

They do exist
Equations without natural solutions

Polynomial equations
with constant RHS are
decidable and in NP

• Since and are monotonic wrt the sizes of the operands, 
each in a solution to the equation has size

• So it suffices to guess a dynamical system of size  
for each variable in polynomial time, then calculate LHS

• Finally we check whether LHS and RHS are isomorphic, 
exploiting the fact that graph isomorphism is in logspace

• Only one caveat: if at any time during the calculations the LHS
becomes larger than , we halt and reject (otherwise the
algorithm might take exponential time)

+ ×
Xi ≤ |C |

≤ |C |

|C |

For with p(⃗X) = C C ∈ D
Nondeterministic algorithm

Systems of linear equations
with constant RHS
are -completeNP

• Given a 3CNF Boolean formula , is there a satisfying
assignment such that exactly one literal per clause is true?

• For each variable of we have one equation ,
forcing one between and to be , and the other to be

• For each clause, for instance , we have one
equation , which forces exactly one variable to

• These are all linear, constant-RHS equations over and more
specifically over , and its solutions are the same as the
satisfying assignments of with one true literal per clause

φ

x φ X + X′ = 1
X X′ 1 0

(x ∨ ¬y ∨ z)
X + Y′ + Z = 1 1

D
ℕ

φ

By reduction from One-in-three-3SAT
-hardness of linear systemsNP

A single linear,
constant-RHS equation
is -completeNP

• Here the vectors are dynamical systems and the scalars are
naturals

• Trivial because the semimodule axioms are a consequence 
of being a subsemiring of :

• as a semimodule has a unique, countably infinite basis  
consisting of all nonempty, connected dynamical systems

ℕ D

n(A + B) = nA + nB (m + n)A = mA + nA

(mn)A = m(nA) 1A = A 0A = n0 = 0

D

Like a vector space, but over a semiring
 is a -semimoduleD ℕ

• Let be the previous system 
of equations, with

• Take any cycles of distinct prime length

• Then the equation  
is a linear equation over having the same solutions  
as the original system

• This means that the problem is -complete even for linear
equations with constant right-hand side over cycles!

p1(⃗X) = 1,…, pn(⃗X) = 1
pi ∈ ℕ[⃗X]

n C1, …Cn ∈ D

C1p1(⃗X) + ⋯+Cnpn(⃗X) = C1+⋯+Cn
D[⃗X]

NP

Several linear equations to one equationℕ[⃗X] D[⃗X]

Reducing the system of equations to one

Irreducible systems

• Formally:

• Notice that this is the opposite of , where irreducible 
(aka prime) integers are scarce

lim
n→∞

number of reducible systems over ≤ n states
total number of systems over ≤ n states

= 0

ℕ

 is irreducible iff implies or A A = BC B = 1 C = 1

Most dynamical systems are irreducible

Prime system

Identifying basic
building blocks

144

Scenario

🏭
DynaSys Inc.

👩
145

Scenario

🏭
DynaSys Inc.

👩
145

Scenario
I want

🏭
DynaSys Inc.

👩
145

Scenario

👩

= X × Y + Z 🏭
DynaSys Inc.

146

Scenario

👩

∅

X =
Y =
Z =

🏭
DynaSys Inc.

147

Scenario

👩

∅

X =
Y =
Z =

🏭
DynaSys Inc.

147

Scenario

👩

∅

X =
Y =
Z =

🏭
DynaSys Inc.

147

Scenario

👩

∅

X =
Y =
Z =

🏭
DynaSys Inc.

147

Scenario

👩

×

Voilà ! 🏭
DynaSys Inc.

148

Scenario

👩

×

Voilà !

👍

🏭
DynaSys Inc.

148

• If a prime appears in a factorisation into irreducibles 
of a system, then it appears in all factorisations

• On the contrary, non-prime systems can sometimes be replaced

• So prime systems are irreplaceable building blocks

• We don’t know if prime systems exist yet!

• But we know several nonprimes, for instance

P

 is prime iff implies or P ≠ 0,1 P ∣ AB P ∣ A P ∣ B
Prime system

× = = ×

• Cycles of length sometimes behave like fixed points

• This is based on the folklore (?) result that

n n

Cn × Cn = n × Cn

Cm × Cn = gcd(m, n) × Clcm(m,n)

Not even prime naturals!
No natural number is prime

• If is disconnected, then is not prime

• If is connected but of period , then is not prime

• If is connected of period , but

then is not prime

• In particular, systems consisting of sums of cycles 
(i.e., the asymptotic behaviours of any system) are nonprime

A A

A > 1 A

A 1

gcd(A) = gcd{#preimages of a : a ∈ A} > 1

A

Work by Johan Couturier
More interesting classes of nonprimes

• We do not know an algorithm for primality testing!

• Nonprimes are recursively enumerable

• Enumerate systems , to find a counterexample 
to the primality of , i.e., but and

• No known way to bound the size of counterexamples

• Fun fact: if primality is undecidable, then primes do exist 😄

A B
P P ∣ AB P ∤ A P ∤ B

Most. Annoying. Open. Problem. Ever. 😡
Is primality decidable?

Open problems

• Do prime systems exist at all? Is primality decidable?

• Is this particular guy here prime?

• What is the complexity of deciding if ? 
And deciding if is irreducible?

• Does it make any sense to adjoin the additive inverses 
in order to obtain a ring?

• Is it useful to find nondeterministic dynamical system  
(i.e., arbitrary graph) solutions to equations?

• Semirings of infinite discrete-time dynamical systems

A ∣ B
A

Algebraic ones
Open problems

• Find larger classes of solvable equations, 
e.g., by number of variables or degree of the polynomials

• Discover classes of equations solvable efficiently

• Probably very hard for systems in succinct form

• Find out if there exist decidable equations harder than

• It would feel strange to jump from to undecidable

NP

NP

Solving equations
Open problems

• Investigate the complexity of problems where a succinct
representation of dynamical system is given as input

• Let be a dynamical system, and suppose that

• A circuit encoding for is a pair of circuits where

• is the characteristic function of

• is such that if

• Easy to construct (even uniformly) circuits for and

(A, f) A ⊆ {0,1}n

(A, f) (CA, Cf)

CA : {0,1}n → {0,1} A

Cf : {0,1}n → {0,1}n Cf(x) = f(x) x ∈ A

A + B A × B

Succinct representations
Open problems

• A. Dennunzio, V. Dorigatti, E. Formenti, L. Manzoni, A.E. Porreca,
Polynomial equations over finite, discrete-time dynamical systems,
13th International Conference on Cellular Automata for Research
and Industry, ACRI 2018, https://doi.org/
10.1007/978-3-319-99813-8_27

• C. Gaze-Maillot, A.E. Porreca, Profiles of dynamical systems and
their algebra, arXiv e-prints 2020, https://arxiv.org/abs/2008.00843

• A. Dennunzio, E. Formenti, L. Margara, V. Montmirail, S. Riva,
Solving equations on discrete dynamical systems (extended
version), 16th International Conference on Computational
Intelligence methods for Bioinformatics and Biostatistics, CIBB
2019, https://arxiv.org/abs/1904.13115

Something to read before bed
Bibliography 📖

https://doi.org/10.1007/978-3-319-99813-8_27
https://doi.org/10.1007/978-3-319-99813-8_27
https://doi.org/10.1007/978-3-319-99813-8_27
https://arxiv.org/abs/2008.00843
https://arxiv.org/abs/1904.13115

