

AntoNio E. PorReca
aeporreca.org/mocana

Modèles de calcul traditionnels

Machines de Turing

Alan Turing (1912-1954)

Machine de Turing = calculateur humain avec papier et crayon

Calculateurs humains

NACA (Comité consultatif national pour l'aéronautique), USA, 1950s

« Normalement on calcule en écrivant certains

 symboles sur le papier. [...] Je considère qu'on effectue le calcul sur un papier unidimensionnel, c'est-à-dire, sur un ruban divisé en carrés. "- Alan M. Turing, On computable numbers

Papier 2D vs ruban 1D

A	B	C
D	E	F
G	H	1
J	K	L

Papier 2D vs ruban 1D

A	B	C
D	E	F
G	H	I
J	K	L

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
\hline A & B & C & ; & D & E & F & ; & G & H & 1 & ; & J & K & L \\
\hline
\end{array}
$$

Papier 2D vs ruban 1D

"Je suppose aussi que le nombre de symboles qu'on peut écrire soit fini. Si on permettait une infinité de symboles, il y aurait des symboles qui diffèrent dans une mesure arbitrairement faible [...] On peut toujours utiliser une séquence de symboles au lieu d'un symbole simple."

- Alan M. Turing, On computable numbers

Symboles atomiques vs composites

Symboles atomiques vs composites

«La différence, de notre point de vue, entre les symboles simples et composites est qu'on ne peut pas observer les symboles composites en un coup d'œil, s'ils sont trop longs. Cela est conforme à l'expérience. On ne peut pas établir en un coup d'œil si 9999999999999999 et 999999999999999 sont égales. »

- Alan M. Turing, On computable numbers
«Champ visuel»
"Champ visuel "

« Le comportement du calculateur à chaque moment est déterminé par le symbole qu'il observe et son "état d'esprit" à ce moment. "

- Alan M. Turing, On computable numbers

"États d'esprit»

"États d'esprit»

"États d'esprit»

"États d'esprit»

"États d'esprit»

1

"États d'esprit»

"États d'esprit»

$$
1
$$

"États d'esprit»

51

« On suppose également que le nombre d'états d'esprit qu'on doit prendre en compte soit fini. Les raisons pour cela sont de la même nature que celles qui restreignent le nombre de symboles."

- Alan M. Turing, On computable numbers

États d'esprit trop proches

États d'esprit trop proches

«On peut éviter l'utilisation d'états d'esprit plus compliqués en écrivant plus de symboles sur le ruban. »

- Alan M. Turing, On computable numbers

Prendre note sur le ruban

Prendre note sur le ruban

Calculateurs

électroniques

Équations de Maxwell

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}
$$

$$
\nabla \cdot \mathbf{B}=0
$$

$$
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \quad \nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)
$$

Calculateurs mécaniques

Calculateurs

gravitationnels

Calculer avec la gravité

Calculer avec la gravité

Calculer avec la gravité

(i) $=\sqrt{\frac{2 h}{g}}$

Calculer avec la gravité

Calculer avec la gravité

Calculer avec la gravité

Calculer avec la gravité

Calculer avec la gravité

Dynamical systems and their algebra

Finite, discrete-time dynamical systems Just a finite set with a transition function (A, f)

Finite, discrete-time dynamical systems

 Just a finite set with a transition function (A, f) modulo isomorphism

General shape of a dynamical system

A few limit cycles

General shape of a dynamical system

A few limit cycles with trees going in

General shape of a dynamical system

 A few limit cycles with trees going in
General shape of a dynamical system

A few limit cycles with trees going in

General shape of a dynamical system

A few limit cycles with trees going in

Discrete (finite, deterministic) dynamical systems up to isomorphisms

Discrete (finite, deterministic) dynamical systems up to isomorphisms

An example from engineering

Traffic lights

名

Traffic lights

Traffic lights

Traffic lights

Traffic lights

An example from science

A planetary system

A planetary system

A planetary system

A planetary system

Evolution in time

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

Decomposing the system

What if our instruments are less sophisticated?

Abstract evolution of the system

Abstract evolution of the system

Product of dynamical systems

Product of systems

Give temporary names to the states

$=$

Compute the

 Cartesian product

 Cartesian product}

Add the arcs between states

Forget the names once again

Back to our

planetary system

Decomposition

Decomposition

Decomposition

Any other decomposition?

Another decomposition

Another decomposition

Another decomposition

More concretely...

More concretely...

6 months

More concretely...

More concretely...

6 months

Untangling complex systems

Traffic lights at a crossroads

8,	8,	\%	18
8, 8	8	澵	B ${ }^{\text {B }}$
818	888	\% ${ }^{\text {g }}$	88
8,	做:		\% 8

Traffic lights at a crossroads

More abstractly...

-

Isomorphism of dynamical systems in polynomial time

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Tree canonisation

A polynomial-time algorithm

Connected dynamical system isomorphism

Another polynomial-time algorithm

- if the systems have cycles of different length then return false
- let T_{A} and T_{B} be the sequences of trees of the two systems
- for each rotation R of T_{B} do
- compare R and T_{A} elementwise in order
- if each pair of trees is isomorphic then return true
- return false

General dynamical system isomorphism
 It can also be done in polynomial time

- A dynamical system is a multiset of connected dynamical systems (more about this later...)
- Checking multiset equality can be done naively with a quadratic number of element comparisons
- And we've seen that each comparison can be done in polynomial time
- This means that the set of dynamical systems is different from a more general set of graphs (nondeterministic dynamical systems), where the isomorphism problem is presumably hard

Isomorphism of dynamical systems Even easier than that...

2009 24th Annual IEEE Conference on Computational Complexity

The problem is clearly in NP and by a group theoretic

Abstract

Graph Isomorphism is the prime example of a computational problem with a wide difference between the known lower and upper bounds on lower and upper bounds for a significant gap between extant planar graphs as well. We by presenting an upper bound and important special case by pre hardness [JKMT03]. In
proof also in SPP [AK06]. This is the current frontier of our knowledge as far as upper bounds go. The inability give efficient algorithms for the probly hard. NP-hardness to believe that the problem is prose if GI is NP-hard then is precluded by a result that sollapses to the second level the polynomial time hierarchy core surprising is that not even [BHZ87], [Sch88]. What is more problem. The best we know P-hardness is known for the [Tor04], the class of problems is that GI is hard for is that GI is har the determinant, defined by co study of iso-

Isomorphism of dynamical systems Even easier than that...

The problem is clearly in NP and by a group theoretic proof also in SPP [AK06]. This is the current frontier of our knowledge as far as upper bounds go. The inability to
Graph Isomorphism is the prime example of a computational problem with a wide difference between the bere is known lower and upper bounds oner and upper bounds for a significant gap between extaridge the gap for this natural planar graphs as well. Wase by presenting an upper bound and important special case by poce hardness [JKMT03]. In give efficient algorithms for the probly hard. NP-hardness to believe that the problem is prates if GI is NP-hard then is precluded by a result that collapses to the second level the polynomial time hierarchy collapses to [BHZ87], [Sch88]. What is me problem. The best we know P-hardness is known for DET [Tor04], the class of problems is that GI is hard for determinant, defined by Cook [Coo85].

The category D of dynamical systems

The inspiration

The category of endomaps of sets

Conceptual Mathematics
A first introduction to categories Second Edition
F. William Lawere Stephen H. Schanuel

Objects \& arrows

- The objects are the dynamical systems (A, f)
- An arrow $(A, f) \xrightarrow{\varphi}(B, g)$ is a function $\varphi: A \rightarrow B$ which commutes with f and g

The category D has sums (coproducts) Necessary but not that interesting

- In graph-theoretic terms, it's just the disjoint union
$(A, f)+(B, g)=(A \uplus B, f+g) \quad$ with $(f+g)(x)= \begin{cases}f(x) & \text { if } x \in A \\ g(x) & \text { if } x \in B\end{cases}$
- This represents the alternative execution of A and B
- The identity is the empty system $\mathbf{0}=(\varnothing, \varnothing)$

The category D admits products Now we're talking!

- In graph-theoretic terms, it's the tensor product

$$
\begin{aligned}
& (A, f) \times(B, g)=(A \times B, f \times g) \\
& \text { with }(f \times g)(a, b)=(f(a), g(b))
\end{aligned}
$$

- This represents the synchronous execution of A and B
- The identity is the singleton system $\mathbf{1}=(\{0\}, \mathrm{id})$

Introducing: the multiplication table, poster-size

	－	\sim	\bigcirc	－	$\%$	\bigcirc	\because	\therefore	$=$	P	∇	$\overline{ }$	\ddagger	6	－	\vdots	\bigcirc	\pm	\therefore	\therefore	\therefore	\because	P．	∇	ρ	？	\cdots	$\stackrel{\square}{\square}$	∇	Δ
－	－	\cdots	\bigcirc	－	\％	＜	\because	\because	8	f	V	$\overline{ }$	t	f	\cdots	t	\bigcirc	\pm	\therefore	\therefore	\therefore	\because	fo	∇	ρ	P	\cdots	s	D	Δ
\cdots	\cdots	\％	\because	4	χ	\dagger	\％	$:$	－	\times	－	，	\checkmark	\times	\pm	t	\％		$\%$	Y	\pm	\％	＜－	－	K	＊	x_{4}	4	x	X
\bigcirc	\bigcirc	\because	\therefore	$\stackrel{\square}{0}$	ft	i	\because	\because	$\stackrel{\circ}{\square}$	pl	∇^{∇}	\pm	z^{2}	$\% \%$	－	t^{2}	8	\pm	\because	\pm	\because	$\stackrel{\text { 亏̈ }}{\square}$	\％f	σ	$广$	p^{p}	$-0^{-\infty}$	$\stackrel{3}{0}$	\square	4
ε	8	4	$\stackrel{\square}{3}$	ρ	\cdots	t	－	$\stackrel{\square}{\square}$	$\stackrel{\square}{3}$	－1	\square	＊	1	\cdots	）		f－	\dagger	\pm	\pm	$\stackrel{3}{0}$	$\stackrel{\rightharpoonup}{3}$	A	θ	Σ	4	$\underline{ }$	$\stackrel{\rightharpoonup}{5}$	，	4
\％	$\%$	＊	f^{\prime}	＋	\cdots	入	＋	\％ 6	＋${ }^{+}$	＊	A	－	＋	＊	$\frac{y}{x}$	＞	$x i$	＊X	4	＋	64	${ }^{4 /}$	＊	x＋	＊	\times	$+\gamma$	＋	－	＋1
γ	\bigcirc		\bigcirc	f	x^{*}	ψ	4	81	i	＋	P	$\frac{*}{\pi}$	${ }_{X}^{X}$	x^{x}	x^{2}	x		t	$A 1$	f	\＄i	\hat{k}	人	$>$	χ^{*}	X	\pm	$f f$	¢	
\because	\because	$\%$	\because	－	＋	i	\cdots	\because	4	\times	$\stackrel{\square}{4}$	k	\pm	关	－	－	i	\＃	\％	F	\because	20	为	\ddot{z}	\％	A	$\times-$	$\Delta 1$	k^{2}	k^{4}
\because	\therefore	\therefore	\because	$\stackrel{3}{3}$	ft	$\$$	\because	为	$\stackrel{3}{\square}$	bp	$\nabla \nabla$	7	7^{2}	\％f	z^{z}	L 2	sin	：	\because	$\stackrel{ \pm}{8}$	\because	\because	e.f.	$\stackrel{\rightharpoonup}{*}$	¢	p_{p}^{p}	20^{20}	$\stackrel{3}{3}$	b^{\square}	$4{ }^{4}$
8	$\stackrel{\circ}{8}$	－	$\stackrel{\square}{\square}$	$\stackrel{3}{3}$	＊	i	\div	$\stackrel{\square}{\square}$	$\stackrel{\square}{3}$	A	∇^{∇}	×	λt	长	$x^{-\alpha}$	L	\#	4	为	5	$\stackrel{\square}{\square}$	苞	迷	θ	y^{2}	1	1	$\stackrel{3}{3}$	L	$4{ }^{4}$
P	f	，	pl	pl	，	＜	11	bl	bf	y^{x}	ζ	K		K	t	Z	f^{\prime}	t	th	ti	bplp	Spp	8	f	＊	It	＊	Ppp	K	人 ${ }^{\text {a }}$
∇	∇	∇	∇^{V}		X	α	∇	$\stackrel{\nabla}{v}$	ω	Z	∇v	K	7	$\stackrel{\nabla}{X}$	A		V	\bar{Y}	$\stackrel{\nabla}{\nabla}$	70	$\stackrel{\nabla}{\nabla}$	$\Delta)^{\nabla}$	\sum_{2}	∇_{∇}	1			0	枵	
$广$	\％	＊	！	I	＊	1	＊	＋	T	χ	X	＊	k	$*$	＊	＊	$y^{\prime} \mathrm{K}$	${ }^{*}$	\cdots	${ }^{+}$	\％	＋	＊	＋	＊	＊	＊${ }^{\text {＊}}$	＋+	t	K
\ddagger	\ddagger	K	t ${ }^{+}$		＊	x^{2}	${ }^{+}$	4^{2}	＋	＊	A	\checkmark		－	x	＋	＋	k^{*}	＋	t	${ }_{4}+$	约	为	x	E	$\underset{y}{7}$	H	K	¢	＜
\％	\ldots	大	$\% \%$	＋	＊	λ_{i}^{\prime}	尔	\％fot	－6．	k	x^{∇}	\cdots	x^{t}	\％	＊－	17	\pm	－x^{\prime}	＋15	btx	\％\％	4，4	＋$\%$	x_{i}^{f}	－	＋	＋	दो	＊	74
α	－	χ	T		t	$+$	$\frac{y-k}{\lambda}$	\％	r-		X	＊	＞${ }_{\text {＊}}$	x^{-2}	χ^{+k}	x^{+}	y	y	x	e^{z}	－	z^{2}	$z<$	x^{2}		＊${ }^{+}$				
\vdots	\vdots		E^{2}		＊		－	t^{2}	y		7	＊${ }^{*}$	－${ }^{+}$	\％					－ 12	大	2 2	12	＋${ }^{\prime}$	\square					7	
i	\bigcirc	$=$	－		x^{x}	τ^{+}	$+i$	\＄¢ ⿺	$f \leqslant$		$>^{\nabla}$	$\frac{v \grave{\pi}}{\pi}$	x	x^{4}	$x^{2}+2$	\％	हैर	\leftrightarrow	＋in	fe^{+}	सil	疮	＋ 2	$\frac{1 v}{}$	天	4		76	－	f^{6}
0	\pm		\pm	，	－\times	＋t	\＃	！	＋1	x^{x}	-4	$*^{*}$	x^{2}	－$x^{\text {K }}$	4	tet	Et	交	\％	$\sqrt{7}$	\％	de	＜＜	－	＊	＊	＋	41	＋	सर
\therefore	\therefore	\％	\because	5		-11	\％	\because	寿		∇ / ∇	x	娎	$H^{4} \text {. }$	$+\frac{X}{x}$	-12	i		$\%$	库	\％	do	He	洨	F	18	\times	$t-$	$\mathrm{x}^{\text {b }}$	$\frac{4}{4}$
\therefore	\therefore	V	¢ ${ }^{\circ}$	4	－${ }^{\text {K }}$	－ 2	V	0	星	a	0	x^{*}	x^{2}	気	x^{4}	y	$4=$	$\sqrt{5}$	寿	y	？	\square	$x=$	0	F2	＋${ }^{4}$	＋	$\Delta \pm$	$+^{0}$	$2{ }^{4}$
\therefore	\therefore	\pm	8	$\stackrel{\rightharpoonup}{6}$	6tt	8	\because	\％	$\stackrel{\text { 긍 }}{\stackrel{\circ}{\circ}}$	bplp	∇_{∇}	$\frac{y}{x}$	$\frac{4}{4}$	革	$\therefore z$	b_{2}	है।	$:$	\％	y_{z}^{2}	\％\％	\％	forp	∇_{\circ}	π	$p_{p}^{p} d p$	\％	$\stackrel{3}{3}$	$b b$	4.4
\because	$\stackrel{\circ}{-}$	$=$	$\stackrel{\circ}{\circ}$	$\stackrel{3}{\square}$	＊	18	4	$\stackrel{\text { \％}}{\stackrel{\circ}{\circ}}$	$\ddot{3}$	$f x$	$\nabla \nabla^{\nabla}$	$7 x$	x^{2+}	灰安家	x	11.	y	－$=$	do	夾	๕ㅜㅜㄹ	里边	60	做 ${ }^{8}$	Fsz	P／	E－	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	碞	4，4
fo	fo	T－	pf	10	\％	i	$\frac{\ell}{\ell}$	fos	$f f,$	81	Y_{v}	k	$x+$	yt	$\underset{x}{F-<}$	z	K	H1	t解	$f!$	解	bof	$f k$	\mathcal{R}_{0}	3k	t	＋	fofse	y^{b}	－ 4
∇	∇	∇.	\cdots	θ	t	4	\％	∇_{σ}	Δ	${ }_{2} \zeta_{S}$	$\stackrel{\nabla}{\nabla_{v}}$	$\frac{z_{k}}{x}$	\dot{z}	$\frac{f_{0}}{x}$	<	4	χ	-1	$\frac{7}{7}$	S	$\stackrel{\rightharpoonup}{*}$	哈。	\dot{k}	$\bar{\nabla} \bar{\nabla}$	x	$\frac{i}{3}$	－	0	$\Delta \Delta$	（4）
\rangle	\rangle	7	\pm	\pm	K	\pm	\％	∞	F	y^{*}	\pm	v	＊		7	\pm	7	＋	＋	${ }_{4}^{2}$	\％	च	$\times 7$	χ^{χ}	＞	＋ 7	＋	戋		$x^{x \times}$
f	P	I	p p	$p^{\text {d }}$	\％	大	＋1	$p_{p}{ }^{\text {d }}$	pp	x	\cdots	K	F	K	x	x	x^{\prime}	＋	f_{p}^{l}	f_{l}	ppp	dpd	l	$\frac{1}{x}$	x^{*}	＋	x^{X}	ppl	＊	N
\cdots	20		$2-\infty$	$2-\infty$	＊		x	22^{2}	20	${ }^{+}$	Y	VK	${ }^{*}$	＊	y		x	x	v	$x=0$	z	E．0	r^{x}	－	K	$x-$	${ }^{\chi}$	zo		JS
5	\square		$\stackrel{\rightharpoonup}{8}$	$\stackrel{\rightharpoonup}{3}$	－	b）	± 1	$\stackrel{3}{3}$	$\stackrel{3}{3}$	or	0	${ }^{\times}$	－	χ^{2}	y	/	y	， 11	$\Delta=$	16	흔	$\begin{array}{\|l\|} \hline \stackrel{y}{3} \\ \text { 형 } \end{array}$	$+x$	0	2	411	15	$\begin{aligned} & \text { 블 } \\ & \hline \end{aligned}$	vio	4，4
D	D		\square	，	＊	＞4	x^{\square}	b^{b}	\square	－	$b b$	＊	\pm	$*^{\square}$		－	－	－${ }^{\text {X }}$	＜ 0°	0^{x}	b	α	x	b^{b}	＊	＊	$3 \times$	a^{2}	4^{4}	T
Δ	4	－	4	4	X	δ	s	44^{4}	4	IS	0	＊	＊	＊${ }_{4}$	－	＜	St	＜	－ 5^{46}	$8^{44^{4}}$	$\begin{aligned} & 4,4 \\ & 4 \end{aligned}$	48	k_{8}	（b）	$+^{+}$	－	\＆	$\begin{aligned} & 45 \\ & 48 \end{aligned}$		4

$\%$					Sos		
∇					5		
				Soss)			

Prettier version

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

Products "preserve" behaviours A is a minor of $A \times B$ for $B \neq \varnothing$

more precisely: a connected A is a minor of each connected component of $A \times B$ for $B \neq 0$

The semiring \mathbf{D} of dynamical systems

D (modulo isomorphisms) is a semiring Like a ring, without subtraction

- Product is (modulo isomorphism) commutative, associative and has identity $\mathbf{1}=(\{0\}, i d)$ in any category where it exists; so, it’s a commutative monoid
- Sum is (modulo isomorphism) commutative, associative and has identity $\mathbf{0}=(\varnothing, \varnothing)$ in any category where it exists; so, another commutative monoid
- The sum is the free commutative monoid (i.e., the multisets) over the set of connected, nonempty dynamical systems
- The distributive law and the product annihilation law do not hold for arbitrary categories, but they do here

+ and \times behave as with nonnegative integers (a commutative semiring)

+ and \times behave as with nonnegative integers (a commutative semiring)

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$

+ and \times behave as with nonnegative integers (a commutative semiring)

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$

+ and \times behave as with nonnegative integers (a commutative semiring)

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$
- Neutral elements: $\varnothing+X=X$ and $8 \times X=X$

+ and \times behave as with nonnegative integers (a commutative semiring)

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$
- Neutral elements: $\varnothing+X=X$ and $8 \times X=X$
- Distributive: $X \times(Y+Z)=X \times Y+X \times Z$

+ and \times behave as with nonnegative integers (a commutative semiring)

- Commutative: $X+Y=Y+X$ and $X \times Y=Y \times X$
- Associative: $X+(Y+Z)=(Y+X)+Z$ and $X \times(Y \times Z)=(Y \times X) \times Z$
- Neutral elements: $\varnothing+X=X$ and $\odot \times X=X$
- Distributive: $X \times(Y+Z)=X \times Y+X \times Z$
- Multiplication by zero: $\varnothing \times X=\varnothing$

No unique factorisation (6)

Multiplication table

\times	\varnothing	\bigcirc	C_{0}	$C_{!}$	O.	G_{i}	a_{\ddots}
\varnothing							
\bigcirc	\varnothing	C	C_{0}	$C_{!}$	C.	c_{i}	
\bigcirc	\varnothing	C_{0}		a_{0}			
C_{0}	\varnothing	C_{0}	C_{0}				
C.	\varnothing	-.					
	\varnothing	C_{i}	\therefore				

\times	\varnothing	\bigcirc	Q_{\ddots}	C_{0}	C.		a_{i}
\varnothing							
\bigcirc	\varnothing	C	C_{0}	C^{C}	©.	C_{i}	a
\bigcirc	\varnothing	G_{0}	C_{i}	C_{0}			
$C_{0}{ }_{0}$	\varnothing	C_{0}	C_{0}				
0.	\varnothing	-.					
C_{i}	\varnothing	C_{i}	\therefore				\because

\times	\varnothing	¢			\because.		
\varnothing							
\bigcirc	\varnothing	\bigcirc		${ }^{\text {c }}$	\because.		
\bigcirc	\varnothing						
$¢^{\text {¢ }}$	\varnothing	$\square^{\text {c }}$			\cdots		
\because	\varnothing	\because					
0	\varnothing						

No unique factorisation
 And the counterexample is minuscule

- The systems $C_{!} C_{0}$ and \square_{0} are irreducible
- Any system with a prime number of states is irreducible, since the state space is a cartesian product
- So . ${ }_{.}^{\text {. }}$. 0 has two distinct factorisations into irreducibles

Systems with arbitrarily many factorisations

Theorem

For each n, there exist a dynamical system with at least n factorisations

Theorem

For each n, there exist a dynamical system with at least n factorisations

Theorem

For each n, there exist a dynamical system with at least n factorisations

Theorem

For each n, there exist a dynamical system with at least n factorisations

$$
\begin{aligned}
(\delta)^{n} & =\Omega_{\Omega} \times(\delta \Omega)^{n-1} \\
& =\left(\Omega_{\Omega}\right)^{2} \times(\delta \Omega)^{n-2}
\end{aligned}
$$

Theorem

For each n, there exist a dynamical system with at least n factorisations

$$
\begin{aligned}
(\zeta)^{n} & \left.=\Omega_{\Omega} \times(\zeta)\right)^{n-1} \\
& =\left(\Omega_{\Omega}\right)^{2} \times(\zeta \Omega)^{n-2} \\
=\cdots & =\left(\Omega_{\Omega}\right)^{n-1} \times \zeta
\end{aligned}
$$

A notable subsemiring

\mathbb{N} is a subsemiring of \mathbf{D}

This means trouble

- \mathbb{N} is initial in the category of semirings
- Meaning that there is only one homomorphism $\varphi: \mathbb{N} \rightarrow \mathbf{D}$

$$
\varphi(n)=\underbrace{1+1+\cdots+1}_{n \text { times }}=\underbrace{C_{\bullet}+C_{\bullet}+\cdots+C_{\bullet}}_{n \text { times }}
$$

- In the case of \mathbf{D}, the homomorphism is injective, since $(\mathbf{D},+)$ is the free monoid over connected, nonempty dynamical systems
- So \mathbf{D} contains a isomorphic copy of \mathbb{N}

Polynomial equations

Polynomial equations over D

For the analysis of complex systems

- Consider the equation

- There is least one solution

$$
x=6
$$

Polynomial equations in semirings As opposed to rings

- A ring has additive inverses (aka, it has subtraction)
- Each polynomial equation in a ring can be written as $p(\vec{X})=0$
- This is not the case for our semiring, which has no subtraction
- The general polynomial equation has the form $p(\vec{X})=q(\vec{X})$ with two polynomials $p, q \in \mathbf{D}[\vec{X}]$

Undecidability of polynomial equations

Undecidability of polynomial equations
 The spectre of Hilbert's 10th problem is haunting D

- We have showed that \mathbb{N} is a subsemiring of \mathbf{D}
- But sometimes enlarging the solution space makes the problem actually easier: given $p, q \in \mathbb{N}[\vec{X}]$
- Finding if $p(\vec{X})=q(\vec{X})$ has solution in \mathbb{N} is undecidable
- Finding if $p(\vec{X})=q(\vec{X})$ has solution in \mathbb{R} is decidable
- Finding if $p(\vec{X})=q(\vec{X})$ has solution in \mathbb{C} is trivial
- So, what about finding solutions in \mathbf{D} ?

Natural polynomial equations With non-natural solutions

- Let $p(X, Y)=2 X^{2}$ and $q(X, Y)=3 Y$ with $p, q \in \mathbb{N}[X, Y] \leq \mathbf{D}[X, Y]$
- Then $2 X^{2}=3 Y$ has the non-natural solution

$$
X=Y=2
$$

- But, of course, it also has the natural solution $X^{\prime}=3, Y^{\prime}=6$
- Notice how $X^{\prime}=|X|$ and $Y^{\prime}=|Y|$
- This is not a coincidence!

The function "size" $|\cdot|: \mathbf{D} \rightarrow \mathbb{N}$ It's a semiring homomorphism

- $|\varnothing|=0$
- $|\Omega|=1$
- Since + is the disjoint union, we have

$$
|A+B|=|A|+|B|
$$

- Since \times is the cartesian product, we have

$$
|A B|=|A| \times|B|
$$

Notation for polynomials $p \in \mathbf{D}[\vec{X}]$

 Of degree $\leq d$ over the variables $\vec{X}=\left(X_{1}, \ldots, X_{k}\right)$

Notation for polynomials $p \in \mathbf{D}[\vec{X}]$

 Of degree $\leq d$ over the variables $\vec{X}=\left(X_{1}, \ldots, X_{k}\right)$$$
\begin{aligned}
& p=\sum_{\vec{i} \in\{0, \ldots, d\}^{k}} a_{\vec{i}} \overrightarrow{X^{i}} \\
& \text { where } \quad \vec{X}^{\vec{i}}=\prod_{j=1}^{k} X_{j}^{i_{j}}
\end{aligned}
$$

for instance $(X, Y, Z)^{(2,4,3)}=X^{2} Y^{4} Z^{3}$

Theorem

Solvability of natural equations

- If a polynomial equation over $\mathbb{N}\left[X_{1}, \ldots, X_{k}\right]$ has a solution in \mathbf{D}^{k}, then it also has a solution in \mathbb{N}^{k}
- In the larger semiring \mathbf{D} we may find extra solutions, but only if the equation is already solvable over the naturals
- Then, by reduction from Hilbert's 10th problem, we obtain the undecidability in \mathbf{D} of equations over $\mathbb{N}[\vec{X}] \ldots$
- ...and thus of arbitrary equations over $\mathbf{D}[\vec{X}]$

Proof

Consider $p(\vec{X})=q(\vec{X})$ with $p, q \in \mathbb{N}[\vec{X}]$

$$
\sum_{\{0, \ldots, d\}^{k}} a_{\vec{i}} \vec{X}^{\vec{i}}=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \overrightarrow{X^{\vec{i}}}
$$

Proof

Suppose that $\vec{A} \in \mathbf{D}^{k}$ is a solution

$$
\sum_{\{0, \ldots, d\}^{k}} a_{\vec{i}} \overrightarrow{A^{i}}=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \overrightarrow{A^{\vec{i}}}
$$

Proof

Apply the size function |•|

$$
\left|\sum_{i \in\{0, \ldots, d\}^{k}} a_{\vec{i}} \vec{A} \vec{i}\right|=\left|\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}} \vec{A} \vec{i}\right|
$$

Proof

The size function $|\cdot|$ is a homomorphism

$$
\sum_{\left\{\{0, \ldots, d\}^{k}\right.}\left|a_{\vec{i}} \overrightarrow{A^{\vec{i}}}\right|=\sum_{i \in\{0, \ldots, d\}^{k}}\left|b_{\vec{i}} \overrightarrow{A^{i}}\right|
$$

Proof

The size function $|\cdot|$ is a homomorphism

Proof

The coefficients are natural

$$
\sum_{\{0, \ldots, d\}^{k}} a_{\vec{i}}\left|\overrightarrow{A^{i}}\right|=\sum_{i \in\{0, \ldots, d\}^{k}} b_{\vec{i}}\left|\overrightarrow{A^{i}}\right|
$$

Proof

We have $\overrightarrow{A^{i}}=\prod_{j=1}^{k} A_{j}^{i_{j}}$

Proof

The size function $|\cdot|$ is a homomorphism

Proof

The size function $|\cdot|$ is a homomorphism

Proof

So $|\vec{A}|=\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)$ is also a solution, QED

$$
p\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)=q\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)
$$

Equations with non-natural coefficients

Equations without natural solutions

They do exist

- Consider, for instance

$$
X^{2}=Y+
$$

- This equation has solution

$$
X=
$$

- But there is no natural solution, because the RHS is non-natural and cannot be made natural by adding stuff

Polynomial equations with constant RHS are decidable and in NP

Nondeterministic algorithm

 For $p(\vec{X})=C$ with $C \in \mathbf{D}$- Since + and \times are monotonic wrt the sizes of the operands, each X_{i} in a solution to the equation has size $\leq|C|$
- So it suffices to guess a dynamical system of size $\leq|C|$ for each variable in polynomial time, then calculate LHS
- Finally we check whether LHS and RHS are isomorphic, exploiting the fact that graph isomorphism is in logspace
- Only one caveat: if at any time during the calculations the LHS becomes larger than $|C|$, we halt and reject (otherwise the algorithm might take exponential time)

Systems of linear equations with constant RHS are NP-complete

NP-hardness of linear systems By reduction from One-in-three-3SAT

- Given a 3CNF Boolean formula φ, is there a satisfying assignment such that exactly one literal per clause is true?
- For each variable x of φ we have one equation $X+X^{\prime}=1$, forcing one between X and X^{\prime} to be 1 , and the other to be 0
- For each clause, for instance ($x \vee \neg y \vee z$), we have one equation $X+Y^{\prime}+Z=1$, which forces exactly one variable to 1
- These are all linear, constant-RHS equations over \mathbf{D} and more specifically over \mathbb{N}, and its solutions are the same as the satisfying assignments of φ with one true literal per clause

A single linear, constant-RHS equation is NP-complete

D is a \mathbb{N}-semimodule
 Like a vector space, but over a semiring

- Here the vectors are dynamical systems and the scalars are naturals
- Trivial because the semimodule axioms are a consequence of \mathbb{N} being a subsemiring of \mathbf{D} :

$$
\begin{aligned}
& n(A+B)=n A+n B \quad(m+n) A=m A+n A \\
& (m n) A=m(n A) \quad 1 A=A \quad 0 A=n \mathbf{0}=\mathbf{0}
\end{aligned}
$$

- D as a semimodule has a unique, countably infinite basis consisting of all nonempty, connected dynamical systems

Reducing the system of equations to one

Several $\mathbb{N}[\vec{X}]$ linear equations to one $\mathbf{D}[\vec{X}]$ equation

- Let $p_{1}(\vec{X})=1, \ldots, p_{n}(\vec{X})=1$ be the previous system of equations, with $p_{i} \in \mathbb{N}[\vec{X}]$
- Take any n cycles of distinct prime length $C_{1}, \ldots C_{n} \in \mathbf{D}$
- Then the equation $C_{1} p_{1}(\vec{X})+\cdots+C_{n} p_{n}(\vec{X})=C_{1}+\cdots+C_{n}$ is a linear equation over $\mathbf{D}[X]$ having the same solutions as the original system
- This means that the problem is NP-complete even for linear equations with constant right-hand side over cycles!

Irreducible systems

Most dynamical systems are irreducible

A is irreducible iff $A=B C$ implies $B=1$ or $C=1$

- Formally:

- Notice that this is the opposite of \mathbb{N}, where irreducible (aka prime) integers are scarce

Prime system

Identifying basic building blocks

Scenario

DynaSys Inc.

Scenario

DynaSys Inc.

Scenario

Scenario

0

Scenario

DynaSys Inc.

0
。

Scenario

DynaSys Inc.

0
。

Scenario

DynaSys Inc.

0
o

Scenario

0
。

Scenario

Scenario

Prime system
 $P \neq 0,1$ is prime iff $P \mid A B$ implies $P \mid A$ or $P \mid B$

- If a prime P appears in a factorisation into irreducibles of a system, then it appears in all factorisations
- On the contrary, non-prime systems can sometimes be replaced
- So prime systems are irreplaceable building blocks
- We don't know if prime systems exist yet!
- But we know several nonprimes, for instance

No natural number is prime Not even prime naturals!

- Cycles of length n sometimes behave like n fixed points

$$
C_{n} \times C_{n}=n \times C_{n}
$$

- This is based on the folklore (?) result that

$$
C_{m} \times C_{n}=\operatorname{gcd}(m, n) \times C_{\operatorname{lcm}(m, n)}
$$

More interesting classes of nonprimes Work by Johan Couturier

- If A is disconnected, then A is not prime
- If A is connected but of period >1, then A is not prime
- If A is connected of period 1 , but

$$
\operatorname{gcd}(A)=\operatorname{gcd}\{\# \text { preimages of } a: a \in A\}>1
$$

then A is not prime

- In particular, systems consisting of sums of cycles (i.e., the asymptotic behaviours of any system) are nonprime

Is primality decidable? Most. Annoying. Open. Problem. Ever. :()

- We do not know an algorithm for primality testing!
- Nonprimes are recursively enumerable
- Enumerate systems A, B to find a counterexample to the primality of P, i.e., $P \mid A B$ but $P+A$ and $P+B$
- No known way to bound the size of counterexamples
- Fun fact: if primality is undecidable, then primes do exist (:)

Open problems

Open problems

Algebraic ones

- Do prime systems exist at all? Is primality decidable?
- Is this particular guy here prime? $\rightarrow \rightarrow \rightarrow$ -
- What is the complexity of deciding if $A \mid B$?

And deciding if A is irreducible?

- Does it make any sense to adjoin the additive inverses in order to obtain a ring?
- Is it useful to find nondeterministic dynamical system (i.e., arbitrary graph) solutions to equations?
- Semirings of infinite discrete-time dynamical systems

Open problems

Solving equations

- Find larger classes of solvable equations, e.g., by number of variables or degree of the polynomials
- Discover classes of equations solvable efficiently
- Probably very hard for systems in succinct form
- Find out if there exist decidable equations harder than NP
- It would feel strange to jump from NP to undecidable

Open problems

Succinct representations

- Investigate the complexity of problems where a succinct representation of dynamical system is given as input
- Let (A, f) be a dynamical system, and suppose that $A \subseteq\{0,1\}^{n}$
- A circuit encoding for (A, f) is a pair of circuits $\left(C_{A}, C_{f}\right)$ where
- $C_{A}:\{0,1\}^{n} \rightarrow\{0,1\}$ is the characteristic function of A
- $C_{f}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is such that $C_{f}(x)=f(x)$ if $x \in A$
- Easy to construct (even uniformly) circuits for $A+B$ and $A \times B$

Bibliography
 Something to read before bed

- A. Dennunzio, V. Dorigatti, E. Formenti, L. Manzoni, A.E. Porreca, Polynomial equations over finite, discrete-time dynamical systems, 13th International Conference on Cellular Automata for Research and Industry, ACRI 2018, https://doi.org/
10.1007/978-3-319-99813-8_27
- C. Gaze-Maillot, A.E. Porreca, Profiles of dynamical systems and their algebra, arXiv e-prints 2020, https://arxiv.org/abs/2008.00843
- A. Dennunzio, E. Formenti, L. Margara, V. Montmirail, S. Riva, Solving equations on discrete dynamical systems (extended version), 16th International Conference on Computational Intelligence methods for Bioinformatics and Biostatistics, CIBB 2019, https://arxiv.org/abs/1904.13115

